The electron

The electron is usually described as a fundamental or elementary particle. That doesn’t tell you much, but when you look for more information, it’s rather scant. You soon learn that the electron has a mass of 9.109 x 10-31 kg or 511keV/c². You learn that it has a charge of −1.602 x 10−19 Coulombs or -1e, the e being elementary charge. You also learn that it has spin ½. However you don’t learn much else. Instead you get mixed messages. Take a look at the enigmatic electron by Frank Wilczek. He said “to understand the electron is to understand the world”. That’s good. But he also said “there are several inconsistent answers, each correct”. That’s not good. Wilczek then said the proper quantum mechanical description of electrons involves wave functions, whose oscillation patterns are standing waves”. That’s good. But he also said “the electron is a simple point-particle”. That’s not good. Nor is electrons are understood with precision, and at the same time utterly mysterious”. I don’t think electrons are utterly mysterious. That’s because I’ve looked at the hard scientific evidence, and the history. Including page 26 of  Schrödinger’s quantization as a problem of proper values, part II. That’s where he said “let us think of a wave group of the nature described above, which in some way gets into a small closed ‘path’, whose dimensions are of the order of the wave length”. Compare and contrast with Dirac, who was enamoured with mathematical beauty but never understood the electron. In 1938, he still thought it was a point particle. In 1962 he thought it was a charged shell.

The electron is not a point particle

Many sources will tell you the electron is point-like. See for example the particle data group. The particle data group is “an international collaboration charged with summarizing particle physics. They produce a review which has been called the bible of particle physics, and has been cited in more than 50,000 papers. And they’ll tell you that electrons are definitely smaller than 10-18 meters”:

Image by the particle data group

This is authoritative stuff, but when you look for the supporting evidence for this point-like electron, it is elusive. Take a look at the 2002 paper limits on sizes of fundamental particles and on gravitational mass of a scalar by Irina Dymnikova, Juergen Ulbricht, and Jiawei Zhao. They talk about the QED reaction e+e → γγ(γ) at energies between 91GeV and 202GeV. That’s high-energy electron-positron annihilation to gamma photons. They say the interaction proceeds via the exchange of a virtual or “excited” electron with a mass greater than 402 GeV, and the characteristic size of this is less than 1.17 x 10−17cm. They also say that they assume that a fundamental particle must have a de Sitter vacuum core related to its mass, with a finite geometrical size defined by gravity. This de Sitter vacuum core is hypothetical. It cannot be employed to support a claim that relies upon a virtual electron exchange. Not when virtual particles only exist in the mathematics of the model. There’s no evidence that a 402 GeV electron is exchanged between the electron and the positron, and there’s no evidence for the de-Sitter vacuum core. So there’s no evidence here that the electron is small.

There’s no actual evidence that the electron is small

On Wikipedia you can read that “observation of a single electron in a Penning trap shows the upper limit of the particle’s radius is 10−22 meters”. But when you follow up on the references and read Hans Dehmelt’s 1989 Nobel lecture you realise that the upper limit is merely an extrapolation. It’s an extrapolation from a measured g value, which relies upon “a plausible relation given by Brodsky and Drell (1980) for the simplest composite theoretical model of the electron”. The extrapolation yields an electron radius R ≈ 10-20 cm, but it isn’t a measurement. Especially when “the electron forms a 1 μm long wave packet, 30 nm in diameter”. When you track back to Brodsky and Dell you can read the anomalous magnetic moment and limits on fermion substructure. And what you read is this: “If the electron or muon is in fact a composite system, it is very different from the familiar picture of a bound state formed of elementary constituents since it must be simultaneously light in mass and small in spatial extension”. The conclusion is effectively this: if an electron is composite it must be small. But there’s no actual evidence that it’s composite. So it’s a non-sequitur to claim that the electron must be small. So again there’s no evidence here that the electron is small.

But there is evidence for electron spin

Note that Brodsky and Dell weren’t talking about measuring the electron’s size. They were talking about “the very (almost incredibly) precise measurements of the electron and muon gyromagnetic ratios”. Also note that Dehmelt wasn’t measuring the electron’s size either. He was using a Penning trap and spin-flips to measure the electron’s magnetic moment. Check out the Wikipedia electron magnetic moment article. It says the electron’s magnetic moment is −9284.764 × 10−27 J⋅T−1. And that if the electron was a classical charged particle literally rotating about an axis with a spin angular momentum of L, its magnetic dipole moment would be μ = -eL/2me. However the measured value is different by the electron spin g-factor, which is known with great precision to be 2.00231930436146. See the spin magnetic dipole moment section of the Wikipedia article and note this: The magnetic moment of an electron is approximately twice what it should be in classical mechanics. The factor of two implies that the electron appears to be twice as effective in producing a magnetic moment as the corresponding classical charged body”. No, Dehmelt wasn’t measuring the electron’s size. He was measuring its spin. The evidence is evidence of the electron’s spin, not its size.

The Stern-Gerlach experiment

Talking of which, I particularly like the discovery of electron spin by Samuel Goudsmit: “But don’t you see what this implies? It means that there is a fourth degree of freedom for the electron. It means that the electron has a spin, that it rotates”. That was in the autumn of 1925, after Wolfgang Pauli shot down Ralph Kronig for the same idea earlier that year. See the Wikipedia spin article: When Pauli heard about the idea, he criticized it severely, noting that the electron’s hypothetical surface would have to be moving faster than the speed of light”. Also note the final paragraph: “in retrospect, the first direct experimental evidence of the electron spin was the Stern–Gerlach experiment of 1922. See the story of the bad cigar, which gives some detail about Otto Stern and Walther Gerlach. Also see Rod Nave’s hyperphysics for a picture of the Stern-Gerlach experiment:

Image from Rod Nave’s hyperphysics 

If you’ve ever played football you’ll know the gist of how the Stern-Gerlach experiment works. Especially if you can bend it like Beckham. You’re twenty yards from goal, and you kick the ball left-of-centre with your right foot, aiming for a point a metre left of the leftside post and a metre above the bar. The ball curves right, into the top left corner. Goal! Or you kick the ball right-of-centre with your left foot, aiming for a point a metre right of the rightside post and a metre above the bar. The ball curves left, into the top right corner. Goal! See the Wikipedia Curl (football) article where you can read about the Magnus effect which causes a rotating ball to form a whirlpool about itself. For the Stern-Gerlach experiment you have to flip things over such that left or right, you’re aiming for the centre of the goal, but the spin takes it to the right post or the left. Silver atoms are like footballs in that there’s an outer electron which is spin-up or spin-down with respect to the rest of the silver atom. It’s like they all have topspin or backspin, and nothing in between. They go to one place or the other, not anywhere in between. Electrons are like footballs too, in that their spin is a real rotation. They don’t rotate like footballs, because they’re spin ½ particles. But nevertheless that spin is real.

Spin is real

See Hans Ohanian’s 1984 paper what is spin? I think it’s a rather telling and chilling account. He says “since the naïve mechanical picture of spin proved untenable, physicists were left with the concept of spin minus its physical basis, like the grin of the Cheshire cat”. He goes on to say Pauli pontificated that spin is an essentially quantum-mechanical property, and that the lack of a concrete picture was a satisfactory state of affairs. He then quotes from Pauli’s 1955 essay Exclusion Principle, Lorentz Group and Reflection of Space-time and Charge: “After a brief period of spiritual and human confusion caused by a provisional restriction to ‘Anschaulichkeit’, a general agreement was reached following the substitution of abstract mathematical symbols, as for instance psi, for concrete pictures. Especially the concrete picture of rotation has been replaced by mathematical characteristics of the representations of rotations in three-dimensional space”. Have you ever heard such astonishing arrogant ignorant nonsense? It’s particularly astonishing because Ohanian says this: “the means for filling the gap have been at hand since 1939, when Belinfante established that the spin could be regarded as due to a circulating flow of energy”. Frederik Belinfante’s paper was 80 years ago. Sigh. Follow the lead and search on Gordon decomposition, and you soon find Gordon decomposition of Dirac current: a new interpretation by Suresh C Tiwari. He says this: wherever matter-radiation interaction is involved, eg the Newton-Lorentz equation or Dirac equation, factoring out e from electromagnetic quantities one always ends up with the combination e²/c that curiously has the dimension of angular momentum”. He also says he put forward a conjecture that electric charge is a manifestation of mechanical rotation. That was in 1997. And here we are in the 21st century still falling for that total lack of visualisation or vividness. It fair takes the breath away.

An electron doesn’t rotate like a planet

An old version of the Wikipedia Stern-Gerlach article more or less says what Pauli said: “Electrons are spin-½ particles. These have only two possible spin angular momentum values measured along any axis, +ħ/2 or −ħ/2. If this value arises as a result of the particles rotating the way a planet rotates, then the individual particles would have to be spinning impossibly fast. Even if the electron radius were as large as 2.8 fm (the classical electron radius), its surface would have to be rotating at 2.3 × 1011 m/s. The speed of rotation at the surface would be in excess of the speed of light, 2.998 × 108 m/s, and is thus impossible. Instead, spin angular momentum is a purely quantum mechanical phenomenon”. There’s just one little problem with that. An electron doesn’t rotate the way a planet rotates. So saying the speed of rotation would exceed c and therefore spin isn’t a real rotation is another non-sequitur. Electron spin is a real rotation. The Stern-Gerlach experiment proves it. And that’s not the only experiment that proves it. The Einstein-de Haas effect proves it too.

Spin is demonstrably a real rotation

The Einstein-de Haas effect dates from 1915. It’s also referred to as the Richardson gyro-magnetic effect, which goes back to 1908. It’s an experiment that measures the torque generated by a reversal of the magnetization of an iron cylinder. The cylinder is surrounded by a solenoid. When you turn on the current, the cylinder rotates. It’s not unlike the impulse that makes your garden hose reel rotate a little when you turn the water on. When you turn the water off, the reel jerks back to its original position. See The Quirky Side of Scientists where David Topper talks about this on page 11. Also see the Wikipedia Einstein-de Haas article. It says this: “Considering Ampère’s hypothesis that magnetism is caused by the microscopic circular motions of electric charges, the authors proposed a design to test Lorentz’s theory that the rotating particles are electrons”. There’s more in the Einstein digital papers under Einstein’s four papers and two notes on Ampère’s molecular currents. Three of the papers were written in collaboration with Wander de Haas, who was Lorentz’s son-in-law. They used alternating current tuned to the natural frequency of the cylinder to produce a measurable deflection. It’s all to do with conservation of angular momentum. The electron’s magnetic moment is called a moment for a reason, and it’s there because the electron behaves like a tiny bar magnet. If you put a bar magnet inside a solenoid, it lines up with the magnetic field, like a compass needle points north. In similar vein the electron intrinsic spins line up with the magnetic field of the solenoid. Reverse the current and these “compass needles” swing round and point the other way. Their angular momentum changes, for every action there is a reaction, so the iron cylinder swings round too, the other way. The crucial point is that the Einstein-de Haas effect “demonstrates that spin angular momentum is indeed of the same nature as the angular momentum of rotating bodies as conceived in classical mechanics”.

Spin angular momentum is real angular momentum

The crucial point to note is that spin angular momentum is a genuine angular momentum, as is the angular momentum of a macroscopic rotating body. If it wasn’t, the action of reversing the electron spin wouldn’t cause the cylinder to rotate. Or vice versa, as per the Barnett effect. That’s the inverse of the Einstein-de Haas effect. You can rotate an unmagnetized soft iron cylinder to magnetize it. See Novel NMR and EPR Techniques by Janez Dolinsek, Marija Vilfan, and Slobodan Zumer. They tell how in 1914 the Barnett effect “provided the first scientific evidence that the electron had an anomalous magnetic moment with a g factor of 2”. They also say many people are not aware of the Barnett effect because it’s mentioned so little in the literature:

The Barnett effect, image from Frontiers in physics, mechanical generation of spin current

Also note that the electron behaves like a tiny bar magnet, that a bar magnet behaves like a solenoid, and that a solenoid features current going around and around. So what’s going around and around in an electron?

The Poynting vector is real too

Take a look at what Feynman said in the Feynman lectures: Suppose we take the example of a point charge sitting near the center of a bar magnet, as shown in Fig. 27–6. Everything is at rest, so the energy is not changing with time. Also, E and B are quite static. But the Poynting vector says that there is a flow of energy, because there is an E × B that is not zero. If you look at the energy flow, you find that it just circulates around and around. There isn’t any change in the energy anywhere – everything which flows into one volume flows out again. It is like incompressible water flowing around. So there is a circulation of energy in this so-called static condition. How absurd it gets!”

Fig 27-6 from The Feynman Lectures by Michael A Gottlieb and Rudolf Pfeiffer

Only it isn’t absurd at all. The Wikipedia Poynting vector in a static field article talks about a circular  flow of electromagnetic energy. It shows the Poynting vector marked with an S. It goes around and around. The article says this: “While the circulating energy flow may seem nonsensical or paradoxical, it is necessary to maintain conservation of momentum. Momentum density is proportional to energy flow density, so the circulating flow of energy contains an angular momentum”. Feynman also said this: we know also that there is momentum circulating in the space. But a circulating momentum means that there is angular momentum. So there is angular momentum in the field”. You bet there’s angular momentum in the field.

It’s light Jim, but not as we know it

The Wikipedia article is talking about a cylindrical capacitor, but it’s true for an electron too. Because the electron is a charged particle, and it behaves like a tiny bar magnet. Because it doesn’t have an electric field or a magnetic field, it has an electromagnetic field. People think this field is static, but something’s going round and round, as per the Poynting vector. And where else have we seen a Poynting vector? Why, in an electromagnetic wave:

Electromagnetic wave image © Blaze labs

So what’s going around and around in an electron? Let’s see now. We made the electron out of light in pair production, we can diffract electrons, as per the Davisson-Germer experiment and the Thomson and Reid diffraction experiment. We can refract electrons, we can perform electron optics with electrons, and when we annihilate the electron with a positron, what we get is light. It’s elementary my dear Watson. The thing that’s going around and around is light. Only when it does, we don’t call it a photon any more. We call it an electron.

A 511keV photon with toroidal topology

John Williamson and Martin van der Mark wrote a paper in 1991 called Is the electron a photon with toroidal topology? The answer is yes, and they’re not the only people to ask such questions. Also see Qiu-Hong Hu’s 2005 paper The nature of the electron:

Images by John Williamson and Martin van der Mark and by Qiu-Hong Hu

As for the radius of this toroidal energy flow, I think it’s important to remember that the photon takes many paths, just like a seismic wave takes many paths. It isn’t limited to some AB line, even if you wrap that line into a closed path. Hence the Wikipedia electron article says the issue of the radius of the electron is a challenging problem. No wonder, because the electron’s field is what it is. Lorentz knew that back in 1902. And we all know that this field has no outer edge. The field gets weaker and weaker with distance from the centre, but it doesn’t stop. So why do people think the electron has a radius? Because Lorentz used the expression m=e2/r0c2? If you’ve ever read Maxwell’s theory of molecular vortices, I think you may know the answer. See the heady collisions Columbia article which likens particles to tornadoes and hurricanes. Then take a look at a hurricane. It has a radius of maximum wind, which lies just within the eyewall. The eye of the storm has a radius, but the radius of the eye is not the size of the storm. The eye is where there is no wind. Where there is no storm:

Hurricane Isabel courtesy of NASA

In similar vein the classical electron radius is not the size of the electron, and nor is any other radius. Saying the electron is point-like is like hanging out of a helicopter probing a whirlpool with a bargepole, and then saying I can’t feel the billiard-ball so it must be really small. Even the Compton radius isn’t the size of the electron. Nor is the Compton wavelength. Wilczek said ”the electron is effectively a spinning ball of charge, which electromagnetism tells us, generates a dipole magnetic field. The size of that ball can be estimated to be roughly 2.4 x 10-12 meters. The electron is not a spinning ball of charge. It’s an electromagnetic wave going around and around that looks like it’s a ball of charge. The wavelength is 2.426 x 10-12 meters, but the wave is wrapped round twice around a twisting turning spin ½ path. That’s why the electromagnetic field variation looks like an all-round standing field and therefore a charged particle.

The radius of “the eye of the storm” for this electromagnetic standing-wave is the Compton wavelength divided by 4π. It isn’t a fluid-flow vortex like a cyclone or a Falaco soliton or a smoke ring. It’s a stress-energy vortex, an optical vortex, an energy flow. But it has intrinsic spin like a tornado has intrinsic spin. That’s what makes it what it is. Remove the rotation from a spinning coin and it’s still a coin. Remove the rotation from a tornado and it isn’t a tornado any more. All you’ve got is wind. It’s the same for the electron. Remove the rotation from an electron and it isn’t an electron any more. All you’ve got is light. Because the electron is a “spinor”, and a spinor does what it says on the can: Spinors were introduced in geometry by Élie Cartan in 1913. In the 1920s physicists discovered that spinors are essential to describe the intrinsic angular momentum, or ‘spin’, of the electron and other subatomic particles”.

The electron is a standing-wave spinor

The electron is a spinor, with an intrinsic spin that makes it what it is: a standing wave. Hence in atomic orbitals electrons “exist as standing waves”. And outside of atomic orbitals, electrons still exist as standing waves. Standing wave, standing field. Like Wilczek said, the proper quantum mechanical description of electrons involves wave functions, whose oscillation patterns are standing waves”.

GNUFDL spinor image by Slawkb, see Wikipedia

This is why the de Broglie hypothesis concerns the wave nature of matter, not the point-particle nature of matter. This is why after noticing a point made by Hermann Weyl, Erwin Schrödinger gave us the time-independent Schrödinger equation which predicts that wave functions can form standing waves”. This is why we can diffract electrons. We can even refract them, as per Ehrenberg and Siday’s 1949 paper The Refractive Index in Electron Optics and the Principles of Dynamics. That’s the paper that predicted what’s now known as the Aharonov-Bohm effect. That dates from 1959, and demonstrates that electromagnetic four-potential is most fundamental, not point particles. We’ve known since 1933 that we can make electrons and positrons out of electromagnetic waves in pair production. See Patrick Blackett’s paper Some photographs of the tracks of penetrating radiation co-authored with Giuseppe Occhialini. We also know that we cannot separate an electron from its electromagnetic field. There are no neutral electrons. The electron’s electromagnetic field is part of what it is. In fact the electron’s electromagnetic field is what it is. There is a wealth of evidence for the wave nature of matter, and no evidence for the point-particle nature of matter. That’s why it’s quantum field theory, not quantum point-particle theory. Or should be.

The electron has spherical symmetry

To grasp what we’re dealing with, I think it’s useful to think of the spinor depiction as something like an uninflated inner tube. When we pump it up, we have a ring torus, akin to the Poynting vector depictions, reminiscent of a dipole, and without a cowlick. But that doesn’t go far enough. We need to keep on inflating. Our inner tube gets fatter, resembling a horn torus. Even that doesn’t go far enough. We have experimental evidence that the electron at rest has a spherical symmetry as per the physicsworld article search for electron’s electric dipole moment narrows. So we have to keep on inflating until our spinor is a spindle-sphere torus. Only then does it look like the s-orbital:

Gifs courtesy of Adrian Rossiter’s torus animations, S-orbital image from the 2010 Encyclopaedia Britannica

Only this isn’t what the electron really looks like, because an electron has no outer surface. I’m tempted to say it has an inner surface, like the eye of the storm, but there is no inner surface in any real sense. The depiction shows the rotation, that’s all. And it isn’t the full picture because in a hydrogen s-orbital the electron’s electromagnetic field is largely countered by the proton’s electromagnetic field. Take the proton away, leaving a free electron, with its field in all its glory. Now what does it look like?

What the electron looks like

Of course, the electron doesn’t really look like anything. It isn’t some purple billiard ball, even if some cosmic joker has also shown it as such in the physicsworld dipole article. It has rotation and internal motion, like Born and Infeld were saying in 1935. A spin ½ wave motion, such that the wave ends up looking like a standing field. And it’s just field, like Gustav Mie said in 1913. But you can “see” a solenoid’s magnetic field with iron filings, so you can “see” the electron electromagnetic field too. Then you see that this field has angular momentum. It isn’t a simple spin, it’s a compound spin, a bispinor spin-½ spin with two orthogonal rotations, one toroidal, one poloidal, one at twice the rate of the other. It’s like a steering wheel spin and a smoke-ring spin combined, but with a toroidal topology and a spherical geometry. The result isn’t so different to the gravitomagnetic field. Oliver Heaviside developed gravitomagnetism as an analogy of electromagnetism. What does gravitomagnetism feature? A space-time vortex along with twisted spacetime and frame-dragging. What’s the difference between gravitomagnetism and electro-magnetism? One deals with curved spacetime, the other with curved space. That’s a big difference, but they’re not entirely different. Take a look at the Wikipedia gravitoelectromagnetism article: “Consider a toroidal mass with two degrees of rotation (both major axis and minor-axis spin, both turning inside out and revolving). This represents a “special case” in which gravitomagnetic effects generate a chiral corkscrew-like gravitational field around the object”. So what sort of electromagnetic field would we have for a spinor with two degrees of rotation? It would look something like this:

Poynting flux image found on physics stack exchange

It’s like you reach into a lattice with your right hand and twist, then reach round the side with your left hand and twist again. Perhaps one day somebody will set up animations to show it to you in an intuitive fashion, demonstrating how pair production really works, and how the electron is a dynamical spinor in frame-dragged space. But I’m going to show you a flat version instead. It’s easier to draw, and easier to grasp:

For some strange reason human beings seem to have difficulty thinking about curvature in three dimensions. It’s somehow easier to understand the electron when it’s depicted as a flat thing on a piece of paper. It’s easier to see why it’s a dynamical spinor in frame-dragged space, and why it moves the way that it does, and how a magnet works. It’s easier to see why the scientific evidence says this is what the electron is. The scientific evidence of the screw nature of electromagnetism. But first, a brief word on the positron.

NEXT

This Post Has 99 Comments

  1. MC

    Why a photon of, say, 512KeV does not form a “particle”?

    1. the physics detective

      Utmost apologies MC, your comment went into the spam folder, and I didn’t notice it. I can’t see why it went into the spam folder, sorry.
      .
      A 512 KeV photon can form an electron or a positron if it interacts with another photon of 511keV or more. If you perform pair production with two 512 keV photons, the electron and the positron will each have 1 keV of kinetic energy. If however you try to perform pair production with two 510 keV photons, you can’t create an electron and a positron. There isn’t enough energy. You need 511keV to bend space full circle and form the electromagnetic wave into a spin ½ standing field “knot” with unit charge. And since the only tool in the box to do this is more of the same, you have to make two opposite knots at the same time.

  2. Harald

    Looking at your citation of “Is the electron a photon with toroidal topology?” by van der Mark and your other descriptions of particles, in particular your last one about the neutron, you seem to follow a description of particles as wound-up or knotted or circulating energy, likely from the electromagnetic field.

    In the chapter on “Confinement” Williamson&van der Mark say that they don’t know how to describe the wound-up field in formulas. I wonder if anything followed from their paper. Looking at the citations at Google, I don’t see any paper picking up on this idea to either show that it is possible or prove that it is impossible.

    What would be needed is as follows: a time varying field (i.e. a function $f:\mathbb{R}^3\to\mathbb{R}^N$ for $N=1$ or $N=3$ or $N=6$) that fulfills the [wave equation][1], yet keeps a small, fixed, finite support (i.e. where it is $\neq 0$) over time. In one dimension, every sufficiently well behaved function $f:\mathbb{R}\to\mathbb{R}$ with finite support can be converted to a wave by using $f_{wave}(t,x)=f(x-t)$. The form of the function stays the same, so it stays “fixed, finite support”, but it moves over the real line with time.

    In [3 dimensions][2], solutions to the wave equation are either spherical waves or planar waves, none of which seems to fit the bill of keeping fixed, finite support over time. Instead the volume of support tends to increase (spherical) or is infinite from the start (plane).

    Yet any combination of the basis waves are also solutions to the wave equation. An approach to van der Mark’s confinement question would be to either prove or disprove that fixed, finite support solutions to the wave equation exist.

    Probably this question has already a paper somewhere. Yet I could not find one. Maybe its trivial to prove the non-existence, which is why nobody bothers.

    [1]: https://en.wikipedia.org/wiki/Wave_equation
    [2]: https://en.wikipedia.org/wiki/Wave_equation#Scalar_wave_equation_in_three_space_dimensions

    1. John Duffield

      Harald: yes, I envisage a massive particle to be an electromagnetic wave “which in some way gets into a small closed ‘path’, whose dimensions are of the order of the wave length”. Schrödinger said that, but Frenkel’s point-particle electron was adopted in QFT, leading to the problem of infinities. See Quantum electrodynamics in the 1920s. It would also seem that TQFT has been forsaken.
      .
      As far as I know Williamson & van der Mark’s paper has been “studiously ignored”. Once you admit a standing-wave electron, renormalization is seen to be a kludge rather than a virtue. Once you know that spin is real, virtual photons are seen to be spurious. And so on. It creates issues.
      .
      I’m sorry, I’m not sure what you mean about the fixed finite support. I would however say Williamson and van der Mark talk of electric fields and magnetic fields, and don’t refer to displacement current at all. Hence they say confinement is an open question. They said “the curvature of space due to the mass of our object is far too weak to confine a photon” but they were thinking of gravity as spatial curvature. It isn’t. Electromagnetism is spatial curvature. I’d love to see them produce a new paper using some of the information here. I’d also love to see somebody produce a lattice simulation of gamma-gamma pair production. I think seeing a wave curl up is vital for developing a wave equation. The electron isn’t that complicated, but here we are 121 years after its discovery, and people still say it’s a point particle with a field instead of a spherically-symmetric standing-wave configuration.

  3. Martin B. van der Mark

    Dear Harald and John,
    Please find present and future papers on my ResearchGate page: https://www.researchgate.net/profile/Martin_Van_der_Mark
    Coming up is a paper on the de Broglie wavelength of an electromagnetic object.
    Regarding your comments: Indeed, for confinement something extra is need, and nobody has been able to really figure out what. The fact that electrons exists shows that such a something must exists even if we cannot find it in present theory, or perhaps we simply lack the imagination for the topological construct that it probably is. So you are both right, something is lacking.
    Note that John Williamson and I have never suggested that space curvature due to gravitation is causing confinement, but it may be some kind of twist of space, leading to a non-simply connected local deformation. This then must be due to the electromagnetic field. As John Duffield is saying, displacement currents seem to essential in this context, and some kind of non-linearity. My latest ideas seems to point to a parametric oscillation…

    1. Thanks Martin, I can see your papers. I think there’s an analogy for the electron’s de Broglie wavelength in stretching a 2-coil spring. The diameter reduces, and when you look at it from one end you might think the circumference, and thus the wavelength reduces too.
      .
      As for the confinement, I think there’s less to it than meets the eye, and people are over-thinking it. I know of no wave where there is no displacement. When a seismic wave moves through the ground, the ground waves. When an ocean wave moves through the sea, the sea waves. When an electromagnetic wave moves through space, space waves.
      .
      Apologies if I misrepresented page 18 paragraph 2 of the electron paper you wrote with John Williamson. What I meant to get across is that electromagnetism is spatial curvature – when a photon goes past you, space waves, and where it waves, it’s curved. I think there are some definite clues to this, which I’ve tried to lay out in the photon and the hole in the heart of quantum electrodynamics, and how pair production works. PS: What’s a parametric oscillation? I liked what Andrew Meulenberg said in the SPIE panel paper about the photon being a self-generated soliton that forms a “light pipe”. It’s a shame SPIE have abandoned fundamental physics.

    2. Robin Pike

      Hello Martin,
      Despite this being an old thread, I hope this reaches you.
      Having read yours and John Williamson’s paper on the topology of the electron,
      I have been wondering if a slightly different representation of the electron as a torus might be useful to consider,
      one where the structure of the torus is constructed from smaller parts.
      On that basis, I have put together some animations that discuss the consequences of such an approach.
      The animations are at the website https://www.thesimpleuniverse.com
      I would be interested to know if such an approach has any interest for you.
      If so, please do get in touch.
      Regards, Robin Pike

      1. The physics detective

        Robin, I’m afraid Martin passed away on January 27th 2020. He had a brain tumour. Very sad.

        1. Robin Pike

          John, very sorry to hear that news.
          I will see if I can contact Martin’s co-author on the paper John Williamson.
          With regards, Robin

  4. Harald

    John, when you say “standing wave”, do you mean it? A standing wave is either the interference of two waves travelling in opposite directions or a wave trapped in a resonator, which in a way again is interference of waves travelling in opposite directions. This would either pose the question “where do the two waves come from” or “what are the walls of the resonator”?

    What I think confinement should really be is what I meant with “fixed finite support”, the better term would likely be “support with time independent bound on its diameter”, where support is the subset of the domain of the wave where it is nonzero. See the formalized description here: https://math.stackexchange.com/q/2974783/121890. No answer yet:-(

    1. Do I really mean standing wave? No. The wave isn’t motionless, it’s going round and round. But it’s in the form of a double loop, so at any one location around the loop there are two wave components which always add up to the same total. So it doesn’t look like a wave going round and round at c. Nothing is waving, instead it looks like a standing field. But it isn’t really standing. Annihilate the electron with a positron and you unwind the loop, so the wave then propagates linearly at c instead of round and round at c.
      .
      When it’s in the double loop configuration I suppose there is a “support with a time independent bound”. The wave is in a double loop displacing itself into a closed path, and it’s time independent, apart from zitterbewegung. Note though that the diameter is an inner diameter, like the diameter of the eye of the storm. It’s the Compton wavelength divided by 2π. There is no outer diameter because the electron field doesn’t stop at some distance from the centre.
      .
      I looked at https://math.stackexchange.com/q/2974783/290393 and I think the answer is yes, see the gifs above, but I don’t know how to express it mathematically. Nor does anybody else, it would seem. Hence no answers. IMHO it’s difficult to describe a 3D dynamical wave in a chiral spin ½ configuration using a line of symbols.

  5. Andy Hall

    There is a lot more to be said, but for now I will limit myself to saying; after becoming utterly disappointed with the attitudes of people on websites like physics stack exchange, I seem to have found the beginnings of a community of sceptical realists with a real desire to figure out what the nature of things is. It is a privilege to observe the discussion in progress. By bizarre coincidence John, the ideas I have been developing address issues relating to 3D dynamics and chirality through cubic geometry. I note the attitude of the wider community to dismiss ideas in the comment about the possibility that disproving the possibility of a fixed finite support solution to the wave equation could be trivial and that is why nobody bothers. Nature seems to have way of achieving the things that mathematicians dismiss trivially. Nature does not worry about divide by zero errors or infinities. It has no problem with allowing bicycles to be ridden although mathematicians do. I am really pleased that the opinions on the forum this blog provides don’t seem to accept simple dismissal of ideas without well considered reasons.

  6. Andy Hall

    With regard to the comment “Nor does anybody else, it would seem.” I would just say, first comes the concept, then the description. Then come the attempts at a formal mathematical description. Then comes an accepted mathematical description. At any point along that timeline may come an experiment that proves to anyone with a brain in their head that something is correct. The ideas and mathematical formalism may lead or lag the experiment. The experiment underpins the theoretical investigation. Observation and understanding can easily precede mathematical formalism, but they don’t always. The two have a synergy. The world does not obey the laws we make for it. If we formulate our laws (of Science) correctly we may Ape the world, inadvertently.

    1. John Duffield

      Thanks Andy. I’m afraid there are people on physics websites who act like “defenders of the faith” rather than empirical scientists. Hence they dismiss not just ideas, but hard scientific evidence too. It can be utterly astonishing at times. I hope I’m never like that. What’s cubic geometry?
      .
      As regards concept/description/mathematics/experiment, yes, that’s how it’s supposed to work. But you may have noticed me saying when a church needs a miracle, a church gets a miracle. If you look closely at some of the “discovery” experiments in particle physics in recent decades, they aren’t particularly convincing.

      1. luce80

        As regards concept/description/mathematics/experiment, I think that in the “macroscopic” world it is exatly the reverse situation. Galileo Galilei let a sphere go down a ramp, then found the rule that object followed, from which you can obtain a mathematical formula that you then try to verify with other experiments. In the “microscopic” world it is more difficult to make the experiments.
        I am reading your blog and found nice ideas and “attitudes”, I do not agree with most of the concepts but I will continue to read it to steal as more ideas as I can.

  7. Andy Hall

    Cubic Geometry is my own invention. So feel free to entirely dismiss it. I noticed that there was a coincidental relationship between energy and cubic geometry when I looked into radar. Electromagnetic radiation is all about power through area. You can visualize three square areas moving in 3 orthogonal directions sweeping out a cubic region. I will provide an animation in due course. That idea got me to thinking that perhaps there was something to be explored in terms of electromagnetism, swept volumes and cubes. I have developed a body of work that I am trying to figure out how best to exploit, but, basically, it looks pretty good to me and I am trying to find a market.

    I agree with your observation that when the Church needs a miracle, the church gets a miracle. That unfortunately is the result of politics, information management and vested interests. Science is not immune, and while they are building billion pound colliders requiring thousands of phd grads to staff it, it will remain less immune.

    1. John Duffield

      The swept volume reminds me of Andrew Worsley and his electron Compton wavelength of λ = 4πn / ν(c³). I do think he’s on to something with that. See https://physics.stackexchange.com/a/196099/76162. I tried to work something out with him a few years back concerning swept volumes and spheres, but we got stuck and both moved on. Good luck trying to find a market. Meanwhile do say more or send me something, and see the Conceptual Development of Einstein’s Mass-Energy Relationship by Chee Leong Wong and Kueh Chin Yap.

  8. gary fishman

    so, what exactly causes 2 511KeV photons to become boxed up in themselves and become an electron/positron pair?

      1. Piotr Trebisz

        The model according to which electrons and positrons are in fact photons with a toroidal topology is quite elegant. The creation of pairs of electrons and positrons through the collision of two photons with sufficient energy appears very plausible at first glance. On closer inspection, however, this interpretation is problematic.

        The pair production by collision of photons is also called the Breit-Wheeler process. In the case of the Breit-Wheeler process, however, only the total energy and the total momentum of the photons involved are of importance. For example, an electron-positron pair can be produced by the collision of two photons, one of which has an energy of less than 511 keV and the other has an energy of more than 511 keV. The Breit-Wheeler process is also not limited to the collision of two photons. an electron-positron pair can also be produced by the collision of any number of photons, it is only important that energy and momentum conservation are observed

        https://en.wikipedia.org/wiki/Breit%E2%80%93Wheeler_process

        So if you want to describe a pair of an electron and a positron as 2 photons with an energy of at least 511 keV and a toroidal topology, then you have to show convincingly how this pair can be produced by the collision of photons whose energy can also be smaller than 511 keV and the number of which does not necessarily have to be exactly 2

        1. The Physics Detective

          I don’t think I have to show that convincingly, Piotr, because we can split one photon into two, and reverse that process. What’s convincing is that we can make electrons and positrons out of photons in gamma-gamma pair production, then we can demonstrate that electron spin is real via the Einstein-de Haas effect, we can also demonstrate electron diffraction and refraction, and we can combine electrons and positrons to get back to photons in electron-positron annihilation. I think there’s ample evidence for the electron being a 511keV photon in a closed path. However I can’t explain why this is not common knowledge, particularly since de Broglie. Schrodinger, Darwin, and Born and Infeld all talked about the electron being a wave in a closed path in the 1920s and 30s.
          .
          One of your comments was in the spam folder I’m afraid. I’m sorry about that. If I turn off the over-zealous Askimet, I will get hundreds of spam comments. I’ll look at your other comments tomorrow.

      2. Piotr Trebisz

        The model according to which electrons and positrons are in fact photons with an energy of at least 511 keV and toroidal topology is quite elegant. In this way, the process of pair production of electron-positron pairs by the collision of two photons with an energy of at least 511 keV each becomes understandable. However, a closer look reveals serious problems.

        The pair production of electron-positron pairs through the collision of photons is called the Breit-Wheeler process

        https://en.wikipedia.org/wiki/Breit%E2%80%93Wheeler_process

        In the Breit-Wheeler process, neither the number of photons involved nor the energy or momentum of the individual photons is important, only the total energy and total momentum of all photons involved in the collision are important and their number can also be greater than 2.

        On the one hand, an electron-positron pair can be produced by the collision of two photons, one of which has an energy of less than 511 keV. On the other hand, an electron-positron pair can be produced by the collision of more than 2 photons, for example 3 or 5.

        A theory according to which an electron-positron pair consists of 2 photons, each with an energy of at least 511 keV, must be able to explain how this pair can arise from the collision of more than 2 photons or from the collision of photons with an energy of less than 511 keV.

        To my mind, this discrepancy indicates that electrons and photons are of really different substance. I would like to read the physics detective’s opinion on this.

        Best regards
        Piotr

  9. gary fishman

    right, but what determines WHEN that happens? Light can apparently exist as 511 mev gamma ray photons, what makes them curl up into a lepton at some particular time?

    1. John Duffield

      When one 511 kEV photon moves through another. Check out gamma-gamma pair production. Each photon displaces the other into itself. Then each photon ends up moving through itself, continually displacing its own path into a closed path.

  10. gary fishman

    ok got it. Thanks.

    1. Good stuff Gary. IMHO the crucial point is that light is a wave in space. So space waves. I don’t know of any waves where something doesn’t wave. And where space waves, space is displaced, space is curved. As far as I know this idea first appeared in Wlliam Kingdon Clifford’s 1870 space theory of matter. He said this:
      .
      (1) That small portions of space are in fact of a nature analogous to little hills on a surface which is on the average flat; namely, that the ordinary laws of geometry are not valid in them.
      (2) That this property of being curved or distorted is continually being passed on from one portion of space to another after the manner of a wave.
      (3) That this variation of the curvature of space is what really happens in that phenomenon which we call the motion of matter, whether ponderable or etherial.
      (4) That in the physical world nothing else takes place but this variation, subject (possibly) to the law of continuity.

  11. Pavel Kudan

    First, John. It is usual error of physicists to state that compositional nature of particles have to be proved. No. It is statement that particle is elementary need proves. Substances, molecules, atoms, nuclei are composite, so if one would like to state that particle, for example, electron is elementary, it has to be proved. That means that all possible candidates of particles known or unknown has to be checked as possible subelectron level subparticles. That was not done.

    For example, negative pion and neutrino can be subparticles for electron, from general considerarions, although it can hardly be understood from physical usual way of thinking.
    You are trying to find true, usual errors is your enemy.
    Second. Spherical symmetry for electron is strange, as for any spinner. Spin 1/2 is not compatible to that symmetry.
    Negative pion could have such symmetry with spin 0, for example.

    1. The physics detective

      I rather think the statement “the electron is elementary” is a cop-out. How can it be elementary when we can create and destroy electrons (and positrons) in pair production and annihilation? Why is there no explanation of how this occurs? Instead what we get is some ju-ju about creation and annihilation oparators that make particles pop into existence or out of existence. It’s garbage.
      .
      The negative pion can’t be a sub-component of an electron because its mass is 139MeV. Sorry Pavel.
      .
      The spherical symmetry isn’t strange. It’s like pumping up an inner tube. The torus gets fatter and fatter. A very very very fat torus looks spherical. See the blue gif on the right of the Wikipedia torus article. And remember, the electron doesn’t have a surface.

      “>

  12. Pavel Kudan

    We can get pairs of elementary particles, as well as pairs of composite particles. That is flexible system and pair formation is matter of energy content, not elementarity. For example, in the list of particles, boson D looks as composite particle, while boson Ds looks as elementary. Both were generated somehow by accelerators.
    I agree with you that it is a shame that explanation for pair formation were not provided, but this not possible without full understanding of nature of particles as standing waves.
    The mass 139 is a reason for physicists to ignore negative pion. Nevertheless, that is just usual error of physicists.
    Sum of mass of possible subelectronic particles must be grater than electron. That’s all that matter. 139 is greater than 0.5. The rest is considered as binding energy. We know too little about mass and particles to conclude for sure that 138.5 energy of binding between particles is impossible.
    But there is another problem. You mentioned this problem. I would call it ‘wave / particle mixing’. Free waves propagating in space are mixed with local standing waves. Photon and neutrino considered particles. But I think you right that neutrino is wave.
    For that reason, some local field twist is needed for particles – as local reflection of neutrino wave symmetry.
    Negative pion + twist = electron? With big energy effect from twisting?
    Another problem is uncertaincy with 3 types of neutrino. Which is the difference between them? How they constructed?
    About spherical symmetry for electron. Spherical symmetry of electrostatic field of electron is well known. I mean that electron itself can hardly be spherical ‘body’, as having spin 1/2 suggests at least more complex construction that spheric. Even if we just imagine simple rotating sphere with vector of angular momentum (spin 1), it already will not be body with symmetry of simple sphere.

  13. Pavel Kudan

    Two independent parameters – spin 1/2 and charge. At least, charged pions with spin zero showed it.
    If neutrino is wave propagating with speed of electromagnetic wave, then we cannot consider it as particle in chemical considerations.
    Then 2 main types of particles we know
    spin 1/2 charge 1 – electron, proton and higher
    spin 0 charge 1 – charged pions and higher

    Thus, charge and spin is independent parameters.
    Third type annihilate to EM for itself:
    spin 0 charge 0
    We may see, that to prevent this self annihilating, particle should have either spin either charge.
    Fourth type spin 1/2 charge 0 – neutron and higher – as we think, is composite. Probably, some other unknown particle may exist with this properties. Something like neutrino propagating wave, but local.

  14. Pavel Kudan

    Did Pauli discovered new wave, not particle? Then they fixed error with Nobel? Another fake? 🙂
    Is local particle with that properties (neutral fermion with mass) is possible? Or from the point of view of standing waves it is not possible, John?

  15. Pavel Kudan

    Very bad error for physics to mix standing (particles) and space propagation (waves)… Really difficult to understand what is real what not…
    Twist = standing version of neutrino wave?

  16. Pavel Kudan

    May twist exists apart from charge?

  17. The physics detective

    A photon is a boson, but it isn’t made up of other particles. An alpha particle is a boson, and it’s made up of two protons and two neutrons. A “boson” is merely a particle with a symmetric wave function.
    .
    Yes, 139 MeV is greater than 0.5 MeV. But don’t kid yourself that 138.5 MeV of binding energy allows a pion to be a component of an electron. The binding energy is small compared to the mass-energy of the components. All that’s there is waves, with a frequency and a wavelength, moving in patterns. The electron pattern is like this O, but it’s a double loop. The pion pattern is like this: 8, and again it’s a double loop.
    .
    Yes, free waves combine with local standing waves. Then the local standing waves move. That’s what happens in Compton scattering. You shave a “slice” off the incident photon and slap it onto the electron. So the electron wave isn’t symmetrical any more. So the electron moves.
    .
    No, negative pion + twist ≠ electron. I’m sorry Pavel. Pions are ephemera. Forget them.
    .
    As for 3 types of neutrino, I think that’s a claim that lacks support. The neutrino is classed as a lepton when it’s more like the photon than the electron. Which is a photon stuck in a double loop. See the Wikipedia muon neutrino article. It doesn’t say much, does it? Perhaps I should write about muons and muon neutrinos.
    .
    No, the electron is not a spherical body. Its field is what it is.
    .
    The charged pions might have spin 0, but that doesn’t mean there’s no spin. It’s like singlet-state positronium. But, yes charge and spin are somewhat independent. A neutrino has spin, but no charge. However a charged particle has spin, even if two parts of that spin are equal and opposite. Annihilation is when the path changes from a closed path to a linear path.

    Yes, Pauli predicted a new wave. But a particle is a wave. So that wasn’t an error set in stone with a Nobel prize.
    .
    All particles with mass have charge. However some particles have negative charge and positive charge in equal measure. Hence they have no net charge.
    .
    Yes, I suppose the twist is the standing version of neutrino wave. And yes, twist exists separately from charge. A neutrino has spin, but no charge.

  18. Pavel Kudan

    Saying about error of Pauli, which was made very stable (fixated) further after and due to Nobel, I mean that waves propagating and particles local should be distinguished for correct understanding. Particle (of the matter) was pieces costituting matter by definition, and waves propagating were forms of energy snd that was correct definitions. Now they are mixed. That misconception to mix different.
    Einstein stabilized that misconception by idea of photon.
    Not fixing (removing) error – stabilizing error, creating a paradigm of it. Fixating.
    Followers, I think, spoiled photon idea even worse. As that rediculous that they affenced Maxwell for not quantized field, but made not just quants of his idea. They made complitely different object.
    Compare photon to Maxwell idea more deeply. You will be shocked, John, as I am schocked.
    Spin considered for proton is 1. I has spirality at propagation by concept (!). Photon correspond to circular polarisation of wave (!), and DOES NOT correspond to original well known planar Maxwell wave propagation.
    Neither Maxwell nor Einstein did not speak something similar. That is crazy. Einstein just postulated that it should be some quants and it should be possibility to represent that quants as it were particles, for explanations of some phenomena – idea of photons.
    Concept of Maxwell and Einstein were silently changed. Who made that?

  19. Pavel Kudan

    Was correct idea of Einstein that we can consider compact propagating waves (energy quants) as particles (photons) in interactions with matter and some other similar applications?
    Yes, of course.
    But should we do it all the time? Should we mix matter and energy forever?
    No, of course.
    The last is alchemy. Misterious fake instead of science.
    The science is dividing phenomenon to categories and studying them. Not mixing all in one heap.
    Particles and waves are manifestations of energy. But should be considered separetly for correct understanding. Now they are mixed.

    1. The physics detective

      I read the first paper. It’s good stuff. Thanks for telling me about it. I wish this sort of thing got more publicity. Here’s a few notes:
      .
      This is not a good assumption on page 2: ”If we take those two extremely accurate figures and assume that the electron’s charge rotates in a circle at the speed of light”. However it pays off because they say the length around the loop = π × 7.72318536 × 10ˉ¹³ m = 2.426310 × 10 ˉ¹² m. However they don’t know that it’s a phase-invariant double loop, like this:
      .
      “>
      .
      On page 4 they say this “the thickness of this charged layer may be very thin and possibly sinusoidal distributed around the perimeter of the loop”. They should play around with a sinusoidal strip of paper and make a spinor out of it. See Wikipedia: https://en.wikipedia.org/wiki/Spinor. Then they’d realise that charge is just what we call it when the minima and maxima of the sinusoidal field variation combine to make an all-round standing field. Funnily enough they mentioned Williamson and van der Mark on page 3, but didn’t pursue their double loop. Instead they talked about the original 1.022 MeV photon being composed of a “rotating charge separation”. In their figure 1 I’d say they’ve got the front and back parts of the photon occupying the same space. I think their postulate 4 is uncalled for – virtual photons are virtual. I also think that they should think more about space with an all-round curvature, and TQFT. On page 4 they talk about the photon as an electric wave and a magnetic wave, but it’s an electromagnetic wave.
      .
      Their Loop de Loop hypothesis sounds great. Sadly it needs more work, because the mass is inversely proportional to the Compton wavelength, and muon decay involves neutrinos.
      .
      But it’s good to read things like this. Thanks again. PS: I’ve just had a quick look at the second paper by Donald Bowen alone, called The Real Reason Why the Electron’s Bare g-Factor Is 2 Times Classical. He still doesn’t have the double loop. I’ll read it properly tomorrow. I’ll also take a look at Mac Gregor’s electron model.

  20. Andy Hall

    Here is a link to a Quora answer to the Question https://www.quora.com/What-is-the-fine-structure-constant. It was interesting to note her views on need for physics to relate to the underlying physical reality rather than getting lost in abstract maths. It was interesting to note her attraction to the vortex description of the electron. She is currently an active PhD researcher at the university of Hamburg. I thought it was useful context in regards of the nature of the issues discussed on this page.

  21. The physics detective

    Thanks Andy. That looks interesting. It’s good to see university PhDs talking about this sort of thing nowadays. Merry Christmas!

  22. David J

    I have been reading with interest your discussion threads on the electron and positron, and find it a pretty good overview of the options out there. I do have a few comments I would like to make but it requires the use of figures. As the reply looks to be only text based I have placed my reply on my Google cloud space and it can be referenced as: https://drive.google.com/open?id=1kN7VKQit00cXD5CVp7CyptdLZ6EVbd0P

    1. The physics detective

      David: Sorry to be slow replying. I’ve had family here for Christmas and New Year.
      .
      Yes, you’re right about the Stern-Gerlach experiment. I wrote this article before I’d written about magnetism. Perhaps I should improve it, and use the NMR image from my nuclear force article, see . There’s two possible orientations for the smaller magnet. Magnetism is most definitely the result of a real rotation. The electron’s spin precesses in a uniform magnetic field, so the electron moves in a circular path. However in a non-uniform magnetic field the path is not circular, and this results in the observed motion of the silver atom – either up or down depending on the orientation of the electron spin in relation to the silver atom. It’s more complicated than the football free-kick analogy.
      .
      I don’t know what to say about the spin direction in the Chudo article being at odds with the Matsua image. Both feature an anticlockwise rotation when looking from the top, and both give a B field arrow pointing upwards. Is there some difference because Chudo et al are talking about nuclei as opposed to electrons?
      .
      Yes, the Bowen and Mulkern material sounds promising. But I feel sure charge is there because of a rotating wave. See https://physicsdetective.com/the-theory-of-everything/. It’s the wave that’s sinusoidal, it’s the wave that’s progressing around the loop at the speed of light. But it also twists Mobius-style, so a field variation looks like a standing field. In addition it goes round the loop twice. Do try it making a Mobius strip starting with a sinusoidal paper strip. When you do, I think you’ll think like me: I think the tadpole or sperm-like photons are wrong I’m afraid. However as you can gather, I also think the Parson’s concept of a loop of continuous charge for an electron is wrong too. It’s the wave going round and round, and the result is charge. It isn’t charge going round and round. Anyway, I think a lot of people are part right, but not all right. Doubtless the same is true for me. I hope I’m receptive to corrections.
      .
      I think the hairy doughnut is topologically correct in that it doesn’t have a cowlick, and nor does the electron electromagnetic field. But I don’t think the electron is actually hairy. I think the trick of it is to inflate the Mobius strip to a torus, then inflate the torus to a spherical spindle-sphere torus, then treat the latter as the eye of the storm. It isn’t some billiard-ball thing in the middle. The electron is its field. It isn’t something that has a field, it is field. I agree that virtual photons are not required, and that the toroidal electron is getting closer to its true nature. We can make electrons out of light waves in gamma-gamma pair production. Then we can diffract them. Standing wave, standing field. Then we annihilate the electron with a positron and we get our photons back. What’s not to like?

      1. David J

        I might have posted this reply in the wrong stream (that for Victor), so I am posting it again.
        .
        Sorry about the delay in responding, but I have been bogged down with quite a heavy work load, but now have more ‘recreational’ time.
        .
        Firstly, about ‘the spin direction in the Chudo article being at odds with the Matsua image ‘: I would expect the long cylindrical axis of the sample to be in the z axial direction to agree with the Chudo diagram, and it is not. It is in the x-y plane.
        .
        I am drawn to the concept of an inflated 3-D Mobius strip wave that’s progressing around the loop at the speed of light resulting in field variation to present as a standing field. My problem with this approach relates to chirality.
        .
        Your proposed model results in two chiral forms that can be equated to the electron and the positron. But the chirality is locked into each (wave) particle type which presents a problem when considering the magnetic field around a wire containing electrons moving as an electric current: when the current is reversed, all electrons within the electric circuit would have to be rotated by 180O to reverse the magnetic field direction. This presents a significant problem for an AC circuit because all the electrons need to be physically rotated as well as changing direction on each cycle. There is also the problem of explaining why the magnetic field around the wire stops when the current flow stops.
        .
        If you can stay with me for the next 3 paragraphs, I will briefly describe my preferred model for free electrons within a conductor, and then come back to relate it to your preferred model.
        .
        The electron model that I favour involves a torus core consisting of concentrated energy moving at close to the speed of light. This energy flow does not have solenoidal circular rotation (i.e. a small radius spin component). At the outer edge of the energy core torus there is a thinning and spreading of the energy radially outwards along the equatorial plane to form a disk-like zone of less concentrated energy that moves in synch with the core energy and forming the electron’s energy field. The electron core and energy field consist of the same type of energy, but the field energy is far less concentrated than core energy and represents a small fraction of the particles total energy, with the ratio of field-to-core energy depending upon the particle’s energisation level.
        .
        When not influenced by an external electromagnetic field, an electron’s field energy remains disk-like and it does not have chirality: it is considered to be in neutral mode. An externally applied electromagnetic field (emf) can push the energy field in a direction parallel to its spin axis, where it turns in on itself to form a vortex that draws the spinning field energy through the centre of the energy core torus and out the other side to form an outer torus of field energy which has chirality due to its spin and long-axis spread. Thus the neutral mode energy field has become polarised to take on the form of an electron or a positron. With the core energy torus remaining non-chiral, it is the chirality of energy field torus that determines whether a polarised particle is an electron or positron as defined by convention (e.g. the right-hand rule).
        .
        The polarisation of the energy field can be reversed instantaneously with minimal overhead by reversing the emf such as for a high-frequency AC current, and when the emf is removed the particle resumes its neutral mode and the magnetic field around the wire conductor disappears. This is only part of the story for explaining the electromagnetic characteristics of electric currents, but is sufficient to describe the model for an electron and a positron here.
        .
        Your model for an electron consists of a double turning (or as you stated, ‘it goes round the loop twice‘) of an half-cycle inflated 3-dimesional Mobius strip to form a torus. If you use a full-cycle waveform and have it wrapped 4 times (1/4 wave cycle per turn) then the fields of the 2 half cycles cancel each other out, so removing the solenoidal component of the field to produce a neutral mode particle. The chirality characteristics of your model so modified would be quite similar to those of my preferred model, and the field would not be chiral until it becomes polarised. This is quite an attractive model to me.

  23. Victor de Haan

    Thanks for this nice work. I read it with pleasure and hope it might stimulate others also. As a historical note: Lorentz was not aware that the electron had a magnetic moment. He only learned about it shortly before he died, but was very intrigued by it as he directly wrote a paper to enhance his electron model and presented this at a Como conference in 1927. Unfortunately he used a spherical charge distributon rotating around an axis and found that the rotational speed was not constant, probably due to radiation leaving the electron. Anyhow, when he would have taken a toroid distribution he might have found a stationary solution.

    1. the physics detective

      Utmost apologies Victor. For some reason your comment went into the spam folder, and I didn’t see it until now because I’ve been too busy of late. Thanks for the information re Hendrik Lorentz. I looked at his book on The Theory of Electrons hoping to see something like de Broglie’s closed path or Schrodinger’s wave group or the Williamson / van der Mark electron, but couldn’t find anything. I am reminded that there are many great men who I have not written about, and that Lorentz is most definitely one of them. I am remiss.

  24. David J

    Sorry about the delay in responding, but I have been bogged down with quite a heavy work load, but now have more ‘recreational’ time.

    Firstly, about ‘the spin direction in the Chudo article being at odds with the Matsua image ‘: I would expect the long cylindrical axis of the sample to be in the z axial direction to agree with the Chudo diagram, and it is not. It is in the x-y plane.

    I am drawn to the concept of an inflated 3-D Mobius strip wave that’s progressing around the loop at the speed of light resulting in field variation to present as a standing field. My problem with this approach relates to chirality.

    Your proposed model results in two chiral forms that can be equated to the electron and the positron. But the chirality is locked into each (wave) particle type which presents a problem when considering the magnetic field around a wire containing electrons moving as an electric current: when the current is reversed, all electrons within the electric circuit would have to be rotated by 180O to reverse the magnetic field direction. This presents a significant problem for an AC circuit because all the electrons need to be physically rotated as well as changing direction on each cycle. There is also the problem of explaining why the magnetic field around the wire stops when the current flow stops.

    If you can stay with me for the next 3 paragraphs, I will briefly describe my preferred model for free electrons within a conductor, and then come back to relate it to your preferred model.

    The electron model that I favour involves a torus core consisting of concentrated energy moving at close to the speed of light. This energy flow does not have solenoidal circular rotation (i.e. a small radius spin component). At the outer edge of the energy core torus there is a thinning and spreading of the energy radially outwards along the equatorial plane to form a disk-like zone of less concentrated energy that moves in synch with the core energy and forming the electron’s energy field. The electron core and energy field consist of the same type of energy, but the field energy is far less concentrated than core energy and represents a small fraction of the particles total energy, with the ratio of field-to-core energy depending upon the particle’s energisation level.

    When not influenced by an external electromagnetic field, an electron’s field energy remains disk-like and it does not have chirality: it is considered to be in neutral mode. An externally applied electromagnetic field (emf) can push the energy field in a direction parallel to its spin axis, where it turns in on itself to form a vortex that draws the spinning field energy through the centre of the energy core torus and out the other side to form an outer torus of field energy which has chirality due to its spin and long-axis spread. Thus the neutral mode energy field has become polarised to take on the form of an electron or a positron. With the core energy torus remaining non-chiral, it is the chirality of energy field torus that determines whether a polarised particle is an electron or positron as defined by convention (e.g. the right-hand rule).

    The polarisation of the energy field can be reversed instantaneously with minimal overhead by reversing the emf such as for a high-frequency AC current, and when the emf is removed the particle resumes its neutral mode and the magnetic field around the wire conductor disappears. This is only part of the story for explaining the electromagnetic characteristics of electric currents, but is sufficient to describe the model for an electron and a positron here.

    Your model for an electron consists of a double turning (or as you stated, ‘it goes round the loop twice‘) of an half-cycle inflated 3-dimesional Mobius strip to form a torus. If you use a full-cycle waveform and have it wrapped 4 times (1/4 wave cycle per turn) then the fields of the 2 half cycles cancel each other out, so removing the solenoidal component of the field to produce a neutral mode particle. The chirality characteristics of your model so modified would be quite similar to those of my preferred model, and the field would not be chiral until it becomes polarised. This is quite an attractive model to me.

    1. All points noted David. Can I point out that this electron model isn’t mine. I saw it first in a 1996 paper by John Williamson and Martin van der Mark. Sadly Martin is no longer with us.
      .
      I’m afraid I can’t see an issue with the magnetic field around a current-carrying wire. Have a look at https://physicsdetective.com/how-a-magnet-works/ and you’ll see that I talk about Larmor precession. In a uniform magnetic field the electron spin precesses, and the electron goes round in circles rather like a boomerang. The positron goes round the other way rather like a left-handed boomerang. In a non-uniform magnetic field the circles aren’t perfect circles, so there’s a net motion. If you change the direction of the current, the electron motion changes.
      .
      I don’t understand your point about the electrons having to be rotated by 180° I’m afraid. As far as I know the electron doesn’t have an orientation. That’s why it’s a spin ½ particle. Imagine a coin rotating like a wheel, and like a top as well. It doesn’t have an orientation because it’s got all that rotation going on instead.
      .
      IMHO the magnetic field around the wire stops because of the screw nature of electromagnetism. Think in terms of a pump action screwdriver. When you push the handle down you get rotational motion of the bit. When you stop pushing the rotational motion stops.
      .
      I read your preferred model. The torus core sounds right, and the energy density is definitely greater in the middle. But the disk-like zone doesn’t feel right because the electron’s field has a spherical symmetry. IMHO you can only achieve this if the torus gets fatter and fatter as you move away from the centre. As far as I know all the energy moves at the speed of light. That means the energy further away from the centre can’t make the same number of revolution per second as that near the centre, so there’s something akin to frame-dragging going on.
      .
      As far as I know the chirality is a vital aspect of particles like an electron. The positron has the opposite charge because it’s got the opposite chirality. I don’t know of any neutral mode for an electron I’m afraid. The externally applied electromagnetic field is in the simplest case another electron. I think of two electrons repelling one another rather like co-rotating vortices. Ditto for two positrons. But an electron and a positron attract like counter-rotating vortices. I too think it’s the chirality of energy field torus that determines whether a particle is an electron or positron. But I also think it has that chirality from the moment it gets created in gamma-gamma pair production.
      .
      I’m using a full-cycle waveform. It looks half-cycle because I’m showing four-potential. See the second picture on https://physicsdetective.com/the-theory-of-everything/. I’m struggling with your 4 times wrapping and neutral mode I’m afraid. Everything I know tells me the field is chiral because electrons and positrons have their positive and negative charge.

  25. David J

    Hi John

    We would seem to be in agreement that the only difference between electrons and positrons is their chirality. Considering such similarity, do you think that both free electrons and positrons could exist within matter?

    In spite of agreement about electrons and positrons there are quite a few differences in our approaches and the assumptions that underpin our interpretations, which is understandable and quite healthy.

    One of your assumptions regarding electrons would seem to be that they have ‘chirality from the moment it gets created in gamma-gamma pair production’. To me, gamma pair production is a way in which high-energy electrons can be created, just as electron-positron annihilation is a way they can be destroyed, and EMR, electrons and positrons are all generated within atoms within matter, being released as energy exchanges (chemical or in response to an energised environment) or from collision, or a combination of both. I am sure that you do not mean that all electrons are derived from gamma pair production, but maybe some clarification is required.

    This brings to mind another important distinction: that between stationary to low-speed electrons and positrons and their high-speed equivalents. I consider that free electrons and positrons within a host material (such an electric conductor) have fields that can be easily manipulated by applied emf or can be induced to become polarised by movement through a magnetic field. Such free particles can acquire enough energy (kinetic energy specifically) to allow them to escape from the host medium. However, because positrons require at least 5 times the kinetic energy that electrons need to escape the holding forces of the atoms of the host material, it is only the very high energy exchange environments such as atomic accelerator bombardment and high energy lasers that can release high-speed positrons, whereas low energy exchanges such as EMR bombardment (the photoelectric effect) and heated filaments (electron guns) can produce electrons.

    I consider that the high kinetic energy manner in which high-speed free electrons and positrons are ejected from matter results in characteristics that are different to those of their low-speed counterparts that remain within their host material. The energy field of the high-speed version is permanently (i.e. they do not revert back to a low-speed particle) highly skewered so as to present as a monopole electric charge; whereas their low-speed counterparts are more symmetrical with the torus energy core central to its energy field, can be easily be polarised to take on the chirality characteristics of an electron or a positron, and have the characteristics of a dipole.

    Regarding the Mobius-style torus model and the energy field of low-speed free electrons and positrons, in the diagram below, figure A is the full sinusoidal cycle, the z-axial component of which is snapshotted in a moment in time as diagram B with torus circumference equal to the wavelength. Diagram C is the equivalent of diagram A, but for the torus circumference equal to a half wavelength: this results in the component of the field in the z-axial direction cancelling each other out.

    However, so far we have only been looking at a 2-D projection in the z-axial direction, and the 3-D story is different particularly in the x-y plane. Diagram D is a snapshot of the x-y plane for the half wavelength situation, which, with the wave moving around the torus, chasing its tail at the speed of light, being shown as E. Mutual interference on the inside of the torus means a reduced field width and the unrestrained outer field being more stretched out. A cross-section through the centre of the torus shows the egg-shaped field pattern of a torus particle in neutral mode as diagram F. A polarised particle is shown as diagram G with the direction of flow of the core energy determining whether it is an electron or a positron. As the chiral field has longitudinal and circular components it represents a twisted flow pattern with in-flow and out-flow vortices at either end. That is about as clear a picture that I can paint for now.

    Regarding Larmor precession, I would consider that electron precession to be fairly minor but sufficient to provide a screw-like wriggle action that contributes to the forward movement of electrons as an electric current once they have been polarised. I would not consider the precession movement of an electron to be sufficient to cause the radial magnetic field around an electric current bearing wire conductor. The thing about precession is that it is angular momentum and as such wants to keep going: if it were causing the radial magnetic field, the field would not dissipate as soon as the power source is disconnected due to a sizable lag time. Rather than being ‘the electron goes round in circles rather like a boomerang’ it might be a case of ‘my boomerang won’t come back’… because it was never thrown in the first place (and apologies to Charlie Drake and the rest of the Aborigine race).

    1. the physics detective

      I don’t think a free positron could exist for long within matter, because it will soon annihilate with an electron. But if there were no electrons around, I think it could last a lot longer if not forever. I wonder if positrons would promote beta decay. I see the neutron rather like Rutherford did, as a close-coupled proton-electron thing with a neutrino twist. I think electron capture does what it says on the tin.
      .
      Yes, I think electrons have their chirality from the moment it gets created. I see it as a 511keV photon in a closed-path configuration, that’s all. No, I didn’t mean that all electrons are derived from gamma-gamma pair production. I just think that’s the simplest method.
      .
      I also think Compton scattering is the simplest way to get an electron to move, and it involves “taking a slice” off the incident photon and slapping it onto the electron in an asymmetrical fashion. Now the closed path doesn’t finish up where it started, and as a result, the electron moves. I think it’s similar for positrons, and that both are similarly affected by electromagnetic fields, albeit the photon goes the other way, as it were. I’ve never considered there’s any issue with positrons escaping from matter – we do have PET scanners.
      .
      I don’t think high-speed free electrons and positrons are particularly different to their low-speed counterparts. Yes, the high-speed is skewed, but I can’t see how that presents as a monopole electric charge. But I do think the low-speed counterparts are more symmetrical. If the electron is perfectly symmetrical, it isn’t going anywhere. I’m not getting this “can be polarised to take on the chirality characteristics of an electron or a positron” I’m afraid. The photon is polarized. It’s the direction in which the wave waves. But then when you wrap the wave up in a closed path, IMHO it’s something like tying a knot left-over-right or right-over left. The polarization doesn’t make the difference, it’s the writhe. Here’s your picture:
      .
      “>
      .
      I think your figure A is an issue, because “field is the derivative of potential”. Take the integral of your sinusoidal waveform, and the full cycle looks like this:
      .
      “>
      .
      This is what you use to make the Mobius-style torus model. I recommend you actually do it with paper strips. Make two long thin sinusoidal paper strips. Take the first one and wrap it round twice with a 180° twist, giving you the 720° rotation that’s associated with spin ½. Do the same for the second one but twist it the other way. Your two Mobius strips have the opposite chirality, and the opposite charge. One has the negative field variation on the outside, the other has the positive field variation on the outside. The 720° rotation means the torus circumference is half the wavelength. But this doesn’t cancel the field as per your diagram C. Your Mobius strip is the same width all the way round, so now there’s no field variation. You have an all-round standing field instead. But it isn’t really a standing field. In truth the wave is moving around the torus at the speed of light, but it’s more than chasing its tail because it’s wrapped round twice. It has to be wrapped round twice so each loop keeps the other loop confined.
      .
      I’m still not getting your neutral mode I’m afraid. Yes the direction of energy flow determines whether it is an electron or a positron, and it’s a twisted flow pattern. But I can’t see scope for any inflow or outflow. It’s just round and round. It goes round the major axis of the torus, and round the minor axis, and there’s two chiral ways to arrange it. See my article on the positron for illustrations.
      .
      The Larmor precession is responsible for the electron’s motion in a magnetic field. I haven’t invented this. See this. The precession of an electron doesn’t cause the radial magnetic field around the wire. You must read How a magnet works. The magnetic field is there because the electrons in the wire are moving, so the rotational forces are no longer balanced. LOL, I remember “my boomerang won’t come back”. But electron motion in a magnetic field really is like a boomerang. Cross my heart and hope to die. The boomerang goes round in circles because its spin precesses. And the right-handed boomerang goes round the other way.

      1. David J

        Hi John
        Once again apologies again for the delay – we all seem to be very busy with lengthening catch-up cycle times.
        Re-reading my last response I suspect that my boomerang comment might have come across as being a bit cynical. It was really just an attempt at humor but might have missed the mark. I hope you weren’t offended by it.

        We seem to agree in many points but coming from different perspectives tend. Many of the concepts under consideration are subtly complex, and it is easy to end up talking cross purposes. One example here is Lamour precession: we both agree that it affects the motion of electrons but possibly in slightly different ways because of the context in which we see it occurring.

        I have had a look at all the references as well as many of your listed topics: your range and volume is very impressive. But at this stage I would prefer to concentrate on the electrons and electromagnetic fields.
        I have been working on my own ’Mysteries of Physics’, but concentrating on the atomic-scale mysteries. Whereas you have created a wide range of Physics-topic discussions, I have used an epub format. I have just finished updating the latest version relating to electrons, electricity and electromagnetic fields. It would be great if you could have a read of this material so you can see where I am coming from: I am pretty sure there is about a 50% overlap where our ideas agree, so we must both be half right and half wrong – but which half?

        So please, if you can find the time, have a look at this work that can be downloaded as an epub or pdf format. I find it easier and quicker to read as an e-book, and even the read-aloud mode in the Freda epub app is not too bad.
        Hopefully the read will provide you with a few more possibilities and we might not be talking quite so much across purposes further down the track.

        The link to download the book titled ‘STEM and the Orbital Model: Has Atomic Physics Lost its Way? ’is…
        https://www.smashwords.com/books/view/950436

        I hope you enjoy the read and find it provocative.

        Regards
        David J

        1. The physics detective

          I look forward to it David. No, I wasn’t offended about the boomerang stuff! I’ll get back to you.

  26. David J

    Hi John
    As you can see with my last reply none of the links or diagrams uploaded which means much of the dialogue won’t make much sense. Perhaps you could indicate how images and links can be uploaded.

    In the meantime,here is the link to the last reply as a pdf that ncludes the links and diagram.
    https://drive.google.com/open?id=1y709I6OuxD7yi_G_An8e5AJhB8kS5g4C

    Cheers

    David J

    1. All points noted David. I’ll get back to you in detail ASAP. I’m tied up with work and travel for a while. Apologies, posting images doesn’t seem to work on the comments. However I can get them to work if I go behind the scenes and edit the comment in WordPress. For example:

      “>

      The syntax is leftchevron img src=”URL” rightchevron

  27. Charles Veres

    Bravo! I’ve been an electronics technician for 50 years without a cogent explanation for what an electron “is”. Thank you.

  28. Preston Guynn

    This article made very good points regarding the electron having an actual physical structure. The article also notes many of the fallacies in considering the electron to be a point particle. However, describing the electron in terms of a photon falls short of the actual structure. The actual structure explains the fact that electron and proton have the same magnitude of charge and spin angular momentum, but different masses, and different magnetic moments. The actual physical structure also explains what the physical effect of “spin flip” is, how photon emission occurs and is quantized, what the physical basis of chirality is, what the basis of mass is, the fine structure constant, Planck’s constant, and how spin interoperates from the particle scale to the galactic scale. This is all described with extremely accurate and precise proofs in my paper “Thomas precession is the basis for the structure of matter and space”. I welcome you to read the paper at https://hal.archives-ouvertes.fr/hal-02628032/document

    Best regards.

  29. Richard Geldreich

    I find diving into what makes an Electron actually tick fascinating. This is controversial, but there’s a growing amount of interesting experiments that show that the “ground state” of the electron in a hydrogen atom isn’t actually the lowest ground state (Hagen and Mills):

    “Quantum mechanics postulates that the hydrogen atom has a stable ground state from which it can be promoted to excited states by capture of electromagnetic radiation, with the energy of all possible states given by En = -13.598/n^2
    eV, in which n >= 1 is a positive integer. By contrast, it has been proposed that the n = 1 state is not the true ground state, and that so-called ‘hydrino’ states of lower energy can exist, which are characterized by fractional quantum numbers n = 1/p, in which 1 < p <= 137 is a limited integer1,2 . Electron transition to a hydrino state, H(1/p) is non-radiative and requires a quantized amount of energy, 2mE1 (m is an integer), to be transferred to a catalyst3,"

    https://assets.researchsquare.com/files/rs-144403/v1_stamped.pdf

    1. The physics detective

      Sorry Richard, but I just don’t buy the hydrino. Nor do I buy there’s a growing amount of interesting experiments that show that the “ground state” of the electron in a hydrogen atom isn’t actually the lowest ground state. Why? Because nobody can reproduce those experiments. And because of electron capture and beta decay, and because of pair production and annihilation. Rutherford thought of the neutron as something similar to a close-coupled hydrogen atom, and I think he was right. I think Williamson and van der Mark were right too. I think the electron is a photon in a closed path, and that we have ample evidence for this, see the article above. The electron emits a photon when it changes energy level because you’re effectively shaving a slice off that photon in a closed path. So electron transition to a lower-energy hydrino state can’t be non-radiative.

      1. _Jim

        re: “Sorry Richard, but I just don’t buy the hydrino.”

        You’ve got to reject the Hagen ‘EPR’ paper then too, and the many observations within. You would be throwing away a LOT of science in doing so though … The paper by Dr. Hagen of Delft University was recently published in the “International Journal of Hydrogen Energy”.

  30. Zbigniew Modrzejewski

    Dear John, it takes time to read everything you wrote, so be patient with me. :-))
    .
    Your scientific intuition is excellent, so it qualifies you as a true Physics Detective. To make a scientific discovery, one needs to be a true detective with an excellent intuition.
    .
    Let me tell you briefly how I see it.
    .
    First, atoms were discovered, as indivisible balls of wide variety of sizes.
    .
    There were too many kinds of atoms, almost no end to the periodic table, and then we realized that all these various kinds of atoms are made of just 3 subatomic particles: protons, electrons, and neutrons.
    .
    So, first the elements of the periodic table were indivisible, and now elementary particles, like electron again are indivisible.
    .
    One of my favorite physicists, Frank Wilczek said, “the proper quantum mechanical description of electrons involves wave functions, whose oscillation patterns are standing waves”. This was already established by Louis de Broglie long time ago :
    .

    .
    However, there is a HUGE difference between electron as a standing wave around atomic nucleus, and a free-standing electron. The point here is that in general, a standing wave needs some physical boundaries to stay between them. In an atom, electron wave closes onto itself only because of the nucleus being present.
    .
    So, to imagine that a free-standing electron could be a standing wave, we need to find a physical cause for it.
    .
    Yes, there is such a cause already known.
    .
    So, now, from a point-like free-standing elementary indivisible electron, we can progress toward a toroidal topology.
    .
    ” John Williamson and Martin van der Mark wrote a paper in 1991 called Is the electron a photon with toroidal topology? The answer is yes. ”
    .
    WOW. It was a huge step forward!
    .
    However, it is merely the first approximation. :-))
    .
    Our intuition just started zooming-in on electron and photon, and instead of an indivisible point, we see a torus.
    .
    ” An electromagnetic anapole is the only allowed electromagnetic form factor for Majorana fermions. ”

    .
    .
    The “anapol particle” and the “hopfotrino particle” are two variations of the same kind, and this indicates possibility of more such variations, especially for the electron.
    .
    If you look at the anapole :
    .

    .
    it is composed of two fields: electric (red) and magnetic (blue), so this makes it an electromagnetic particle.
    .
    And what quantum particles are equivalent of ??
    .
    Subatomic particles are equivalent of waves of a field.
    .
    Therefore, the anapole particles is NOT an electromagnetic field. Anapol PARTICLE is an electromagnetic wave of the ELECTRIC FIELD.
    .
    And this is how the hopfotrino particle looks like :
    .

    .
    John, to make the long story short, I have completely successfully demonstrated that photon particle is “made of” two hopfotrino particles. Therefore, the internal complexity of electron particle will have to be at least the same. And it will have to account for electron’s negative charge and mass, and also for photon’s no-charge and no-mass. How come photon has energy and momentum, but NO mass ???
    .

  31. Zbigniew Modrzejewski

    D.L. Hotson shares the following story in “Dirac’s Equation and the Sea of Negative Energy”, talking about himself in the third person:
    .
    “ Unfortunately, he could not resist asking awkward questions. His professors taught that conservation of mass-energy is the never-violated, rock-solid foundation of all physics. In ‘pair-production’, a photon of at least 1.022 MeV ‘creates’ an electron-positron pair, each with 0.511 MeV of rest energy, with any excess being the momentum of the ‘created’ pair. So supposedly the conservation books balance.
    .
    But the ‘created’ electron and positron both have spin (angular momentum) energy of h/4p. By any assumption as to the size of electron or positron, this is far more energy than that supplied by the photon at ‘creation’.
    .
    ‘Isn’t angular momentum energy?’ he asked a professor.
    .
    ‘Of course it is. This half-integer spin angular momentum is the energy needed by the electron to set up a stable standing wave around the proton. Thus it is responsible for the Pauli exclusion principle, hence for the extension and stability of all matter. You could say it is the sole cause of the periodic table of elements.’
    .
    ‘Then where does all this energy come from? How can the ‘created’ electron have something like sixteen times more energy than the photon that supposedly ‘created’ it? Isn’t this a huge violation of your never-violated rock-solid foundation of physics?’
    .
    ‘We regard spin angular momentum as an ‘inherent property’ of electron and positron, not as a violation of conservation.’
    .
    ‘But if it’s real energy, where does it come from?’ (..)
    .
    ‘Inherent property’ means we don’t talk about it, and you won’t either if you want to pass this course.’
    .
    Later, Mr. Hotson was taken aside and told that his ‘attitude’ was disrupting the class, and that further, with his ‘attitude’, there was no chance in hell of his completing a graduate program in physics, so ‘save your money’. He ended up at the Sorbonne studying French literature and later became a professional land surveyor.”
    .

  32. Christopher S.

    Your Clear writing is a Great contribution to Humanism. Athiesm and Humanism both came to the same conclusion as Humanism. ThankYou

  33. TomR

    Zbigniew, You’ve given me something to really Think about, and for that I thank you and the Physics Detective and the rest of the commentators here.

  34. felix osum

    Hi, I have been binging your articlea for a while now and have been looking at the literature for similar ideas. I found a professor by the name of Pavel Osmera from the Czech Republic and his papers talk about the torus shaped electrons. He expands the idea by describing how electrons and protons bind, how protons and neutrons arrange inside the nucleus and how this affects chemical bonding.
    It would be interesting to hear your point of view.
    Here are some links to the literature.
    Pavelosmera.cz
    ringtheory.eu

    1. The Physics Detective

      I’ll have a look, Felix. Many thanks. But right now, it’s time my Friday night got started!

    2. The physics detective

      Felix: I took a look. I think they’re partially right, in that when the path is closed path, that’s matter. But I think their photon model looks wrong. It’s just a wave, not a series of rings. See http://ringtheory.eu/public/files/Foton-elektron-pozitron.pdf and look at the depiction of the electron and positron in Figure 13. That’s a diagram of the direction of energy movement in model a) electron, b) positron. That’s right. That’s the Poynting vector, the electron and the positron have the opposite chirality. But that energy surely isn’t a series of rings.I think they need to work on their photon model. If you know these guys, please get them to read this: https://physicsdetective.com/what-charge-is/ . Tell them to cut a long thing sinusoidal strip of paper and make a Mobius strip out of it. It goes round twice, hence spin half.

  35. Leon

    Hi John, any chance we’re going to see another blogpost in the near future?

    Anyway, here’s a random thought: Classical angular momentum is given by L = r × p, where r is the radius and p is linear momentum.
    A photon’s linear momentum is given by h/lambda; if the radius r = Electron Compton wavelength/4π, the angular momentum of a photon going in a circle with the radius of an electron is S = (Electron Compton wavelength/4π) × (h/lambda), which equals 1/2 hbar if lambda = E.c.w.
    The sign – or + is just indicative of the direction in which the photon is spinning with respect to the chirality of the Mobius strip.
    The quantization of angular momentum stems from the fact that the speed of light is what it is, so there’s only so many values angular momentum can take.

    1. The physics detective

      Yes Leon, this week. Sorry I haven’t posted much recently. The day job has been tough.
      .
      I think the quantization of angular momentum is down to h actually, because the speed of light varies with gravitational potential. People say it doesn’t, but Einstein did, as does the evidence of optical clocks.

  36. Piotr Trebisz

    The model according to which electrons and positrons are in fact photons with an energy of at least 511 keV and toroidal topology is quite elegant. In this way, the process of pair production of electron-positron pairs by the collision of two photons with an energy of at least 511 keV each becomes understandable. However, a closer look reveals serious problems.

    The pair production of electron-positron pairs through the collision of photons is called the Breit-Wheeler process

    https://en.wikipedia.org/wiki/Breit%E2%80%93Wheeler_process

    In the Breit-Wheeler process, neither the number of photons involved nor the energy or momentum of the individual photons is important, only the total energy and total momentum of all photons involved in the collision are important and their number can also be greater than 2.

    On the one hand, an electron-positron pair can be produced by the collision of two photons, one of which has an energy of less than 511 keV. On the other hand, an electron-positron pair can be produced by the collision of more than 2 photons, for example 3 or 5.

    A theory according to which an electron-positron pair consists of 2 photons, each with an energy of at least 511 keV, must be able to explain how this pair can arise from the collision of more than 2 photons or from the collision of photons with an energy of less than 511 keV.

    To my mind, this discrepancy indicates that electrons and photons are of really different substance. I would like to read the physics detective’s opinion on this.

    Best regards
    Piotr

  37. Piotr Trebisz

    I have to apologize. It was not my intention to spam here. I posted my comment several times because I was wondering why it didn’t appear here right away. Once again, and this time only once at this point.

    The model according to which electrons and positrons are in fact photons with an energy of at least 511 keV and toroidal topology is quite elegant. In this way, the process of pair production of electron-positron pairs by the collision of two photons with an energy of at least 511 keV each becomes understandable. However, a closer look reveals serious problems.

    The pair production of electron-positron pairs through the collision of photons is called the Breit-Wheeler process

    https://en.wikipedia.org/wiki/Breit%E2%80%93Wheeler_process

    In the Breit-Wheeler process, neither the number of photons involved nor the energy or momentum of the individual photons is important, only the total energy and total momentum of all photons involved in the collision are important and their number can also be greater than 2.

    On the one hand, an electron-positron pair can be produced by the collision of two photons, one of which has an energy of less than 511 keV. On the other hand, an electron-positron pair can be produced by the collision of more than 2 photons, for example 3 or 5.

    By the way, exactly the same applies vice versa! The annihilation of an electron with a positron does not always produce exactly 2 photons. Depending on the total energy and momentum of the electron-positron pair, annihilation can also result in the production of more than 2 photons. Annihilation can also result in the production of photons whose energy is less than 511 keV. To complicate matters further, the annihilation of an electron-positron pair does not always result in the production of photons. Sometimes high-energy neutrinos are produced instead

    https://en.wikipedia.org/wiki/Electron%E2%80%93positron_annihilation

    A theory according to which an electron-positron pair consists of 2 photons, each with an energy of at least 511 keV, must be able to explain how this pair can arise from the collision of more than 2 photons or from the collision of photons with an energy of less than 511 keV. And the same applies to the reverse process, namely annihilation.

    To my mind, this discrepancy indicates that electrons and photons are of really different substance. I would like to read the physics detective’s opinion on this.

    Best regards
    Piotr

    1. The Physics Detective

      Piotr, you have a choice. You can either believe in magic and mystery, wherein in gamma-gamma pair production, electrons and positrons somehow pop into existence because of “creation operators” whilst photons pop out of existence due to “annihilation operators”. Or you can believe in the hard scientific evidence of the wave nature of matter and electron spin, and take note of what Schrodinger et al said. Then you can appreciate that all that happened was a change from a linear path to a closed path. Make sure you read this paper by Born and Infeld:
      .
      https://royalsocietypublishing.org/doi/pdf/10.1098/rspa.1935.0093

  38. Leon

    Hi John, I’ve recently stumbled upon “The Hopf Fibration and Encoding Torus Knots in Light Fields” by John Vincent. This, and related works in the bibliography, prove the Hopf fibration is a stable solution of the electromagnetic field, and show that the natural configuration for these systems is, guess what… Knots. Unbelievably, they don’t make the connection: they say it would be interesting to create these knots out of light in the lab, without realizing they are actually talking about pair production.

  39. Raf

    Hi John,

    I think you will be interested in this video, and as it mostly related to the electron I post it here:
    https://www.youtube.com/watch?v=ExhSqq1jysg&ab_channel=HuygensOptics
    it is funny that a guy with some speakers on his kitchen table is giving us potentially more insight into what is really going on in stead of these hugely expense colliders…

    1. Good one Raf, thanks. I watched it all. I was thinking how could he rig up a wave in a closed path? Like the picture here by Kenneth Snelson. I left him a message, but I’m not sure he’ll see it.

      1. Raf

        yes indeed the closed path is the key to the whole thing and intuitively it just feels right and why I keep coming back to this blog. This is such a stable configuration that it can keep going on forever unless you knock it with something :-). I think the more complex knots are, the easier to decay. I think that is why you have this particle zoo but these are just ephemeral and not fundamental…
        I think it can be done in zero gravity flights, you take a rubber band and excite it, you will get this standing wave. I know the analogy is not perfect since in the electron the wave also rotates and as a results creates charge, but hey, sometimes it is good to see something with your own eyes, in order to believe it… and of course nobody has seen an electron, or any of the other particle zoo inhabitants because I came to the conclusion there is nothing there, just a vibration in the ether 🙂

  40. Steve Powell

    Would not an electron, being an em wave, when bound to a proton be polarized? Apologies if this has been discussed previously.

    1. Steve: I don’t think so. I think polarization is a feature of an ensemble. Transverse waves are polarized if they all wave up and down in the same direction. This doesn’t apply to a single wave. However I get a lot of hits when I do a Google verbatim search on hydrogen polarization. So I have to say I’m not sure.

  41. Christian

    Sorry, but I still don’t understand why only 511keV photons can be curled up. Why are there no let’s say 1eV photons being curled up to form a 1eV mass particle (two 1eV photons would create a “1eV electron” and “1eV positron” to be precise, however this has never been observed), or 10eV photons forming a 10eV particle? Why can only 511keV photons “curl up” in such a way? I’m having a hard time understanding that.

    1. The Physics Detective

      Christian, I think you need to have some idea of what the photon is. Have a read of https://physicsdetective.com/what-is-a-photon/ and https://physicsdetective.com/the-photon/. After that please read https://physicsdetective.com/the-hole-in-the-heart-of-quantum-electrodynamics/ and https://physicsdetective.com/how-pair-production-works/. As far as I can tell the photon is a literal wave in space. Where the photon currently is, space is waving. Where space is waving, space is curved. For a low energy-photon, the curvature is slight. For a high-energy photon, the curvature is more intense. If you were to send another photon through a region of space where the curvature is slight, you will deflect its path a little, but not much. If you were to send another photon through a region of space where the curvature is intense, you might deflect its path so much that you redirect it back into itself, wherein it then continually deflects its own path, and ends up in a double-loop closed path, where each loop confines the other. That’s because it’s continually moving through a region of space where the curvature is intense. As far as I can tell the electron path is in effect a “trivial knot”.

  42. Christian

    Hence, there is a threshold (511keV). However, I still don’t understand what determines that threshold.Your answer is with high energy photons the “curvature of space is intense” which boils down to a threshold being met. Still there is no definition what “intense curvature” means. Intense curvature relative to what?
    I don’t want to sound like a spammer or bot (actually your model sounds quite elegant also regarding the proton and neutron), I’m just trying to get my head around this certain threshold of photon energy which needs to be met in order to create an electron and what determines this threshold.

  43. Christian

    Ok, I see the amplitude of all photons is 3.861 x 10-13 m (threshold!).

    1. The Physics Detective

      That’s what I think. I think it’s something like plucking a Spanish guitar with a plectrum in your right hand. The amplitude of your pluck is always the same, but the wavelength varies as you move your left hand up and down the frets. Take a look at pictures of the electromagnetic spectrum, and the wave amplitude is always the same. Hence only one wavelength will do to make a trivial knot and wrap and trap a wave in space into a closed path. Guys like Schrodinger talked about a wave in a closed path in the 1920s. The idea goes back to Maxwell, see a worble embracing itself. You need a different wavelength for the trefoil knot, which is the next knot in the knot table.
      .

      1. Christian

        Yes, I understand it now. I had to read “how pair production works” twice in order to get the point. With all photons having an amplitude of a reduced Compton length the pair production with the 511keV threshold makes sense. The interesting question is what is the reason for all photons having this amplitude. Anyway, your blog is very interesting to read.

          1. Christian

            If space has this limit then wouldn’t that also imply a limit to the zero point radiation spectrum? According to Haisch and Puthoff the Zero Point Radiation has a spectral energy density with a frequency dependence to the power of 3. However, space having an “elastic limit” at 511keV would imply a “cutoff” of this spectrum which would be a contradiction to the assumed Lorentz invariance. So, how can this be resolved, or am I missing here something? BTW do you have anything on the Casimir Effect in your blog?

            1. The Physics Detective

              Christian: I don’t think so. This “elastic limit” applies to the wave amplitude, not the wavelength. IMHO it’s why Planck’s constant of action h applies to all photons, and is nothing to do with 511keV. IMHO the 511keV is important because that’s where there’s a 2π relationship between wavelength and amplitude. Having said that, I think there is some kind of high-frequency cutoff because there’s got to be some constraint on the rise speed as the wave approaches. I don’t have much on the Casimir effect or Zero-Point energy on my blog because the former is very weak and I don’t think the latter is very important. I view space and energy as the same thing. In my view zero-point energy is akin to the ripplets on the surface of the ocean, and it’s the ocean itself that’s important.

              1. Christian

                Regarding the importance of zero point energy you might reconsider after reading this publication from Prof. Garret Moddel:
                Zero Point Enery: Capturing Evanescence, Journal of Scientific Exploration.
                https://doi.org/10.31275/20222567
                In a nutshell he managed to extract energy form the zero point field via a MIM (Metal Insulator Metal) diode and a Casimir Cavity. There is also a youtube video of Prof. Moddel explaining the physics of this device in more detail and why it does not violate the 1st law of thermodynamics. Anyway, thanks and have a nice day.

  44. Steve Powell

    Ok for a photon to make a sharp change in path there must be a steep gradient of gravitational potential. What could cause that? Even near a black hole I imagine the gradient of potential is 1 over r, the same as everywhere else. The only place I know of where a potential drops more steeply is the near electric field of an antenna.
    .
    Can gravity have a near field as well?

    1. The Physics Detective

      Steve: a gravitational field is a place where space is inhomogeneous. A photon’s path will curve downwards very gradually in this space because it’s subject to a refraction. This is not the same thing as the curved space associated with a wave in space, which results in a far more dramatic curved path.
      .
      As far as I can tell the near field close to an antenna is an artificial gravitational field. Take a look at the quote I gave at the end of the Lifters article: “We would jokingly play catch with volcanic rocks close to the radar stations just because it altered the physics of how the rocks flew, not by much, but strangely enough to have fun as a kid”.

Leave a Reply