Why clocks go slower when they’re lower

This is in response to a query from Jonas K. See my post you can lead a horse to water, and take a look at the comments. OK, I’ll start again from the beginning, Jonas, you're blue: Textbook optical clocks of the bouncing-photons-kind go slower when lower in a gravitational field, yes. So do Cesium-based atomic clocks, by exactly the same amount. Why is that? It’s because a Cesium-based atomic clock has an electromagnetic nature. Take a look at the NIST caesium fountain clock: Image courtesy…

Continue ReadingWhy clocks go slower when they’re lower

A worble embracing itself

See the 2014 essay on the fluid dynamics of James Clerk Maxwell by Henry Keith Moffat. He referred to Maxwell’s 1867 letter to Peter Guthrie Tait. That’s where Maxwell said the simplest indivisible whorl “is either two embracing worbles or a worble embracing itself”. A worble embracing itself has a ring to it. I think it’s one of the secrets of the universe myself. Because John Williamson and Martin van der Mark were talking about something similar in their 1997 paper Is the electron a photon…

Continue ReadingA worble embracing itself

Even physicists don’t understand quantum mechanics

Check out Sean Carroll’s New York Times article Even Physicists Don’t Understand Quantum Mechanics. I thought it was great. And I just loved that subtitle: Worse, they don’t seem to want to understand it. Carroll started by quoting Feynman, who said this: “I think I can safely say that nobody really understands quantum mechanics”. That’s a good start. Feynman was known as the great explainer, but he couldn’t explain how a magnet works. Or how gravity works. Moreover he was a major contributor to quantum electrodynamics,…

Continue ReadingEven physicists don’t understand quantum mechanics

Misconceptions in particle physics

Physics is said to be the king of the sciences, and particle physics is said to be the most important branch of physics. As per the Wikipedia particle physics article, it’s the branch of physics that studies the nature of the particles that constitute matter and radiation. The article tells us that elementary particles are excitations of the quantum fields, and says this: “the currently dominant theory explaining these fundamental particles and fields, along with their dynamics, is called the Standard Model”. Glenn Starkman gives a…

Continue ReadingMisconceptions in particle physics

Electromagnetic gauge theory

The standard model of particle physics is said to be a gauge theory. It’s made up of different sectors, including the electroweak sector which is said to be a Yang-Mills gauge theory. The Encyclopaedia Britannica electroweak theory article says it “arose principally out of attempts to produce a self-consistent gauge theory for the weak force, in analogy with quantum electrodynamics”. Quantum electrodynamics is the theory that says the electron is a point-particle, that electrons and protons interact by throwing photons at one another, and that photons…

Continue ReadingElectromagnetic gauge theory

What charge is

The electron doesn’t have an electric field, it has an electromagnetic field. If you’re a positron and I set you down near a motionless electron, you will move linearly towards it, and it will move linearly towards you. So you might think the electron has a radial electric field, which results in a linear electric force. But it doesn’t. That linear force is there because the electron has an electromagnetic field, and so does the positron. Linear and rotational force Moreover the interaction between these fields…

Continue ReadingWhat charge is

Why magnetic monopoles do not exist

There’s a lot of articles about magnetic monopoles. See this for example: the hunt for magnetism’s elementary particle begins. It dates from 2016, and it’s by Avaneesh Pandey. He says this: “magnets, for reasons we still do not understand, seem to exist only in the form of dipoles - ones with a north and a south end. Break a bar of magnet into two, and you still do not get a magnetic monopole. Instead, you now have two smaller magnets, each with its north and south…

Continue ReadingWhy magnetic monopoles do not exist

The screw nature of electromagnetism

If you’ve ever read Maxwell’s On Physical Lines of Force, you may have noticed this: “a motion of translation along an axis cannot produce a rotation about that axis unless it meets with some special mechanism, like that of a screw”. Maxwell was referring to what I can only describe as the screw nature of electromagnetism. If you have a pump-action screwdriver you’ll appreciate that linear force is converted into rotational force. That’s like an electric motor: current flows through the wire, and the motor turns.…

Continue ReadingThe screw nature of electromagnetism

The positron

The positron is usually described as a fundamental or elementary particle. That doesn’t tell you much, but when you look for more information, it’s rather scant. You soon learn that the positron  has a mass of 9.109 x 10-31 kg or 511keV/c². You learn that it has a charge of 1.602 x 10−19 Coulombs or +1e, the e being elementary charge. You also learn that it has spin ½. However you don’t learn much else. Particularly since the particle data group doesn’t have a listing for…

Continue ReadingThe positron

The electron

The electron is usually described as a fundamental or elementary particle. That doesn’t tell you much, but when you look for more information, it’s rather scant. You soon learn that the electron has a mass of 9.109 x 10-31 kg or 511keV/c². You learn that it has a charge of −1.602 x 10−19 Coulombs or -1e, the e being elementary charge. You also learn that it has spin ½. However you don’t learn much else. Instead you get mixed messages. Take a look at the enigmatic electron…

Continue ReadingThe electron