How gravity works

Once you understand that there is no time flowing inside an optical clock, then you understand that an optical clock goes slower when it’s lower because light goes slower when it’s lower. Because the speed of light varies in the room you’re in. After that you understand that light waves curve downwards in a gravitational field for the same reason that sonar waves curve downwards in an ocean. Search the ES310 sonar propagation webpage and you find where the US Navy said it: “Recall how differences in the index of refraction (which are a measure of the propagation speed) affected electromagnetic waves”. Search the Einstein digital papers and you can find where Einstein said it: “the curvature of light rays occurs only in spaces where the speed of light is spatially variable”.

Light curves because the speed of light is spatially variable

Einstein said it time and time again, year after year. Yes, he came up with special relativity in 1905 with his two postulates, one of which was “the speed of light is constant”. But only two years later in 1907 he was saying light curves in a gravitational field because the speed of light isn’t constant. He said it again in 1911, 1912, 1913, 1914, 1915, and 1916. You don’t find Einstein saying light curves because spacetime is curved. Instead you find him talking about the energy-density of space varying. You can liken this to the density of air varying. Sound waves in air tend to curve downwards at night because the cooler air near the ground is denser:

Image from Rod Nave’s hyperphysics, see refraction of sound

In similar vein a light wave “veers” downwards rather like a car veers left when it encounters mud at the side of the road. We can do something similar with light with something as simple as a piece of glass. That’s why we have lenses in spectacles. But we can also do it with an energy-density gradient in space. That’s why we have gravitational lensing. See Professor Ned Wright’s Deflection and Delay of Light article for more. He doesn’t say the light is deflected because spacetime is curved. Instead he says this: “In a very real sense, the delay experienced by light passing a massive object is responsible for the deflection of the light. The figure below shows a bundle of rays passing the Sun at various distances”:

Gif from Ned Wright’s Deflection and Delay of Light

Once you know this, you can make sense of the rubber-sheet analogy. It’s sometimes said to be a tautology, in that gravity is used to try to explain gravity. However it can explain gravity rather well provided you know what it’s really depicting.

The rubber sheet analogy

The starting place for that is that the curvature you can see in the images relates to spacetime curvature. That’s associated with a “curved metric”, and a metric is associated with measurement. As for what you’re measuring, imagine you could place a 15 x 15 array of optical clocks throughout a horizontal slice of space around the Earth. Then you plot all the clock rates, such that the lower slower clock rates generate data points lower down in a 3D image, and the higher faster clock rates generate data points higher up in the 3D image. When you join the dots, your plot looks like this:

CCASA image by Johnstone, see Wikipedia

That’s an image from the Wikipedia Riemann curvature tensor page. It’s effectively the rubber-sheet depiction of curved spacetime. And because it’s derived from optical clock rates, it’s also a plot of the speed of light. Some might say that it’s just a plot of the “coordinate” speed of light, but it’s more than that. There is no time flowing inside an optical clock, so the height at some location on the plot depicts the real speed of light at that location. It also depicts the gravitational potential at that location. Meanwhile the slope at some location depicts the first derivative of gravitational potential, and therefore the force of gravity at that location. The curvature at some location depicts the second derivative of gravitational potential, and therefore the tidal force at that location. That’s where the force of gravity changes most. That’s spacetime curvature. If you don’t have any spacetime curvature, your plot can’t get off the flat and level, which is why spacetime curvature is said to be the defining feature of a gravitational field. But note that a marble rolls down where the sheet is sloping rather than curved, and that your plot is what’s curved, not space. Your plot of measurements is curved so your metric is curved, so spacetime is curved, but space is not.

Light does not follow the curvature of spacetime

This is why light does not follow the curvature of spacetime. You can appreciate this if you zoom in on a section of the plot. If we represent a light beam with a yellow line, it curves wherever there’s a gradient in gravitational potential. That’s where the plot has a slope, where the grid lines are tilted as opposed to curved:

The force of gravity and so the curvature of light is greatest where the tilt is greatest. The tilted light-cones in the 2009 Stanford singularities and black holes article by Erik Curiel and Peter Bokulich depict this. Alternatively you can emulate the tilt with a piece of stiff board. Lift one side up, and roll a marble across it. It follows a curved path because the board is tilted, not because the board is curved. It’s similar for the room you’re in. The force of gravity is 9.8 m/s² at the floor and at the ceiling, so there’s no detectable tidal force, and so no detectable spacetime curvature. But your pencil still falls down. That’s detectable. The point to note is that gravity isn’t there because spacetime is curved, it’s there because there’s a gradient in potential, and a gradient in the speed of light.

Gravitational time dilation does not occur because spacetime is curved

Another point to note is that gravitational time dilation does not occur because spacetime is curved. That’s confusing cause and effect. Curved spacetime corresponds to your curved plot of optical clock rates, and optical clocks don’t go slower when they’re lower because your plot of clock rates is curved. They go slower when they’re lower because light goes slower when it’s lower, along with all other electromagnetic phenomena. And light goes slower when it’s lower because space near the Earth is different to the space further away. Because a concentration of energy in the guise of a massive planet “conditions” the surrounding space, this effect diminishing with distance in a non-linear fashion.

Space is a polarizable medium

Einstein talked about it in his 1920 Leyden Address. He said this: “According to this theory the metrical qualities of the continuum of space-time differ in the environment of different points of space-time, and are partly conditioned by the matter existing outside of the territory under consideration. This space-time variability of the reciprocal relations of the standards of space and time, or, perhaps, the recognition of the fact that ’empty space’ in its physical relation is neither homogeneous nor isotropic, compelling us to describe its state by ten functions (the gravitation potentials gμν), has, I think, finally disposed of the view that space is physically empty”. Einstein didn’t talk about spacetime curvature. Instead he talked about space that was neither homogeneous nor isotropic. He finished up saying this: “recapitulating, we may say that according to the general theory of relativity space is endowed with physical qualities; in this sense, therefore, there exists an ether”. He also spoke of “the refraction of light rays by the gravitational field”. So did Newton, see Opticks query 20: “Doth not this aethereal medium in passing out of water, glass, crystal, and other compact and dense bodies in empty spaces, grow denser and denser by degrees, and by that means refract the rays of light not in a point, but by bending them gradually in curve lines?” All this talk of aether might sound archaic, but it isn’t. Julian Schwinger wrote a paper quantum electrodynamics II : vacuum polarization and self-energy. Space is a polarizable medium. You can also find modern authors saying much the same thing. See for example the 2008 paper Inhomogeneous vacuum: an alternative interpretation of curved spacetime.

Space is not some ideal Newtonian emptiness

Also see the Wikipedia aether theories article and note the quote by Robert B Laughlin: “it is ironic that Einstein’s most creative work, the general theory of relativity, should boil down to conceptualizing space as a medium when his original premise [in special relativity] was that no such medium existed”. Laughlin also said space is more like a piece of window glass than ideal Newtonian emptiness. He finished up saying this: “the modern concept of the vacuum of space, confirmed every day by experiment, is a relativistic ether. But we do not call it this because it is taboo”. Einstein is supposed to have done away with the aether in 1905 but in the end, he didn’t. He thought of space as a something rather than a nothing. In his 1929 essay on the history of field theory, Einstein described a field as a state of space. He was talking about gravitational fields and electromagnetic fields, and he said this: “it can, however, scarcely be imagined that empty space has conditions or states of two essentially different kinds”. The point to appreciate is that according to Einstein a field isn’t something that exists in space, it’s a state of space. As to what sort of state, I’d say a gravitational field is a place where space has an energy-density gradient. Or perhaps it’s better to say it’s a pressure-gradient, and that space has an elastic quality.

Space is modelled as an elastic solid

This is why if you google on Einstein elastic space, there’s plenty of hits. This is also why general relativity is related to continuum mechanics. This is why we have the stress-energy-momentum tensor, which “describes the density and flux of energy and momentum in spacetime”:

Public domain image by Maschen, based on an image by Bamse see Wikipedia

The shear stress term on the right tells you we’re dealing with something that could be modelled like some kind of elastic solid. The energy-pressure diagonal tells you it’s an elastic solid subject to pressure. For an analogy, imagine you have a block of gin-clear ghostly elastic jelly, with grid lines in it so you can see what’s going on. You slide a hypodermic needle into the centre of the block, and inject more jelly. This represents a concentration of energy bound up as the matter of a massive star. It creates a pressure gradient in the surrounding jelly. Stress is directional pressure, the pressure is outwards, and Einstein’s equation Gμν = 8πTμν is modelling the way gin-clear ghostly elastic space is conditioned by the energy you added. But don’t forget that you added jelly to represent energy, and that the jelly also represents space. Space doesn’t just have some kind of innate intrinsic vacuum energy. At some deep fundamental level, space and energy are the same thing.

Curved spacetime is not curved space and time

Yes, some people talk about elastic spacetime as opposed to space, wherein gravitational waves are elastic ripples that propagate through spacetime. I think that’s the wrong approach myself, because spacetime models space at all times, so there is no motion in spacetime. So it’s space that’s elastic, not spacetime. People also talk about curved spacetime as if it’s curved space and curved time, but I think that’s the wrong approach too. See John Baez and Emory Bunn’s preliminaries article dating from 2006: “Similarly, in general relativity gravity is not really a ‘force’, but just a manifestation of the curvature of spacetime. Note: not the curvature of space, but of spacetime. The distinction is crucial”. Space isn’t curved where a gravitational field is. Instead as Einstein said, space is “neither homogeneous nor isotropic” where a gravitational field is. Because a concentration of energy conditions the surrounding space. Because of this the speed of light is spatially variable, and because of that light curves. When you plot the spatial inhomogeneity using optical clocks at different elevations, your plot is curved because the inhomogeneity decreases with distance. That’s why the force of gravity diminishes with distance in a non-linear fashion, in line with the inverse square rule. Eventually when you’re a long long way from Earth your optical clock readings no longer exhibit any variation with elevation. At such a location space is homogeneous, spacetime is flat, light goes straight, and your pencil doesn’t fall down..

A better analogy

It’s important to appreciate that the curvature in the rubber sheet picture is not the curvature of space in some higher dimension. We have no scientific evidence for any such higher dimension. However we do have evidence that space is three dimensional. That’s why the three-dimensional gin-clear ghostly elastic jelly is a better analogy than the rubber sheet. You can draw it by imagining you’re looking at the Earth in the rubber-sheet lattice from underneath. Think in 3D, and you can get a feel for the way the surrounding jelly is pressed outwards rather than pulled down or inwards. Like this:

Image credit: NASA (I added the lattice lines)

However this depiction can still cause issues because the Earth is spherical. As a result the grid lines are curved, sending the wrong message about curved spacetime. To clear the air on that we need to zoom in to get rid of the curvature of the Earth. Like this:

Image credit: NASA (I removed the moon and added the lattice lines and the light beam)

The height of each rectangle in the lattice relates to the optical clock rate at that location. Because they’re optical clocks, the height of each rectangle also relates to the speed of light at that location. And because the speed of light is spatially variable, a beam of light going across the picture will curve downwards like the sonar wave. Hopefully you can see how this relates to Ricci curvature. Whilst the image above shows rectangles instead of geodesic balls, you can easily imagine that the more flattened the rectangle, the lower the gravitational potential. And usually when gravitational potential is lower, the gradient in gravitational potential is steeper, so light curves downwards all the more.

Why matter falls down

Anyway, once you understand why light curves, it’s easy to understand why matter falls down. All you need to know about is the wave nature of matter, as demonstrated by the Davisson-Germer experiment. And about the Einstein-de Haas effect which demonstrates that spin angular momentum is indeed of the same nature as the angular momentum of rotating bodies as conceived in classical mechanics”. And about pair production, wherein we can make an electron and a positron out of light. See Hans Ohanian’s 1984 paper what is spin? He said this: “the means for filling the gap have been at hand since 1939, when Belinfante established that the spin could be regarded as due to a circulating flow of energy”. It’s like what Feynman said, if you look at the energy flow, you find that it “just circulates around and around”. So just think of an electron as light going around and around. Then simplify it to light going around a square path. Like this:

Now imagine it’s in a gravitational field. The vertical parts of the path stay vertical, but the horizontal parts bend down a little. So the electron falls down:

In essence the reducing speed of light is transformed into the downward motion of the electron. Internal kinetic energy is converted into external kinetic energy. But only the horizontal component bends down, so the Newtonian deflection of matter is only half the deflection of light. Since you can diffract protons and neutrons and other things too, the same principle applies to matter in general. To things like your pencil. Like Newton said in his 1692 letter to Richard Bentley, there is no magical mysterious action at a distance. There are no gravitons flying back and forth either. That might come as an unpleasant surprise to some. It isn’t the only one.


This Post Has 37 Comments

  1. I should mention that Albrecht Giese gives a somewhat similar explanation at I think it dates from circa 2004. I picked up the gist of why the electron falls down from Reg Norgan in circa 2006, but I don’t know when Reg came up with it. See page 27 of his treatise Both approach the subject from a “without Einstein” angle, presumably because they predate the Einstein digital papers being available online.

  2. David Johnson

    I get a little uneasy with a comparison between light and sound transmission, because sound requires atoms and/or molecules to support their propagation.

    If Gravity is the competitive tug-of-war pull by objects such as Earth and your body on accumulated external low-level energy (see my article ‘Photons and Electrons’ at, some of which is provided by the bodies themselves, then it would be expected that photons within light beams would be dragged slightly off course as well, particularly by a large mass body such as our planet. What is amazing is that small deflections from parallel beams of light separated by about one metre (or your separate rooms) can be measured at all.

    And I am not sure why you would represent something ‘circulating around and around’ as a square in the first place (instead of a circle), and then to reduce its length on one side only to represent gravitational pull. Wouldn’t it be more realistic to show a circle transforming to an ellipsoid or possibly a distorted vortex?

    1. David: don’t feel uneasy about the comparison between light and sound, because all waves need a medium of some kind to support their propagation. It’s a myth that electromagnetic waves don’t, and instead the magnetic wave generates the orthogonal electric wave and vice versa. Photons are dragged off course, that’s why light beams curve. Yes, it would be more realistic to show a circle. A torus would be even better, see Adrian Rossiter’s torus animations here: . I wanted to keep things as simple as I could, especially in the early articles. See my comment above, which didn’t appear because of some approval issue. Albrecht Giese uses a horizontal circle which is deformed into a helix.

    2. Jim

      @David “I get a little uneasy with a comparison between light and sound transmission, because sound requires atoms and/or molecules to support their propagation.” – you are quite right to be uneasy. John is incorrect when he states that quantum waves need a medium in which to propagate. That’s not the case at all, because what is propagating is, in effect, a force field.

  3. Jim

    “because all waves need a medium of some kind to support their propagation” – that is only correct for waves that represent movement within a medium.
    As Maxwell showed, you can have waves that travel in a vacuum. These waves propagate a field, so we are seeing the propagation of a field through a vacuum in the form of a wave.
    A field is not just “there” – it is caused by the propagation of virtual quantum entities – waves – that need no medium. Quantum entities ARE the medium.
    And so this brings us to photons interactring with a gravitational field. Unlike photons, which have spin zero, gravitons have spin 2. But they are both waves. And it is the interaction of these waves, arguably the absorption and re-emmission of the photons by the gravitational field, that “slows” down the light rays. That process – absorbtion and re-emission, is what slows down the light ray. The photons themselves always move at light speed. Always. With no exceptions (give or take effects in the undiscovered theory of quantum-gravity of course).

    1. You’re in for some surprises. See what Maxwell said when he was talking about displacement current. He said “light consists of transverse undulations in the same medium that is the cause of electric and magnetic phenomena”. And whilst those photons always move at the speed of light, the speed of light varies in the room you’re in. An optical clock is not some cosmic gas meter with time flowing through it. An optical clock goes slower when it’s lower because light goes slower when its lower. Not for any other reason. Einstein said this year after year, but people just can’t believe it. PS: there are no rainbows in gravitational lensing.

      1. Jim

        “light consists of transverse undulations in the same medium that is the cause of electric and magnetic phenomena” – If Maxwell said that, then he was incorrect. But then again he did not know quantum mechanics. The light literally IS the cause of electric and magnetic phenomena. Be wary of believing everything you read by old masters.
        The “optical clock” goes slower when lower because the caesium or whatever quantum beast is “ticking” is interacting with virtual “gravitons”, or whatever the quantum gravitational field comprises – that affect its wave function. Photons themselves are not moving slower.

  4. Jim

    On the topic of the ether – physicists know that there is an ether. It’s the foam of virtual subatomic particles created by the uncertainty principle, that gives rise to the non-zero energy of the vacuum. That this energy is so low relative to what quantum mechanics predictss is perhaps the greatest mystery of physics. It’s the greatest gap between prediction and experiment ever measured. Prediction says that this energy should be truly enormous, so much so the Universe would simply explode.
    BUT, such an ether is not required for field waves, such as photons, to propagate. It is just background noise, which does interact very weakly with photons, causing tiny delays when the photons get absorbed and re-emmited.

    1. I’ll talk about photons at a later date. Meanwhile think of space as something like the sea. Vacuum fluctuations are something like tiny ripples on the surface of the sea. They aren’t the same thing as the sea.

      1. Jim

        You are making a mistake when you use classical waves as an analogue for quantum waves. Many the errors you are making stem, I believe, from that mistake.

  5. talks about it

    I will immediately snatch your rss as I can not find your e-mail subscription hyperlink or newsletter service. Do you’ve any? Please permit me recognise in order that I may just subscribe. Thanks.

  6. Read Even more

    It’s really a great and helpful piece of information. I’m satisfied that you shared this helpful information with us. Please keep us informed like this. Thank you for sharing.

  7. Lance Wenner

    Why do people keep claiming that light slows down or speeds up when there is absolutely not one experiment in the real world that demonstrates that? Then they quote Einstein to confirm this. Funny Einstein said light speed is constant not variable. If gravity bent light then why when a laser is shot to moon and back from a mirror on the surface a straight line? The photons are not bent by the gravitational field of the earth or the moon and had to go through both so called fields twice. The photons do spread out as the sides of a cone but still in a straight line back. Everywhere on the earth they get the same distance reading so where is it bent to change the reading of distance?

    1. Ralph Clark

      The 1918 solar eclipse provided Sir Arthur Eddington with the opportunity to observe the apparent location of a star shining at us from beyond a position just above the limb of the sun. It was not where it should have been, the light rays having been bent by the sun’s gravity on its way to his telescope. This was the first confirmation of General Relativity.
      Earth’s gravity is much weaker and of course when they shine that laser at the moon it is more or less parallel with both the earth’s and the moon’s gravitational fields. So there will be some slowing, but not much bending.

  8. Rares Marian

    The metaphor of injecting gel is backwards. Space contracts near high energy density. So spatial coordinates are compressed together near a mass/high energy density.

    As for no time flowing, you can read compressed space as more space compared to an undisturbed spacesheet. But it is still constant. It just has more space to move through.

    However, since the effective space distance between two interacting particles of an optical clock near the Earth is larger, the mechanisms of the clock are also slowed down. So is your heartbeat since that involves movement caused by electromagnetism between your atoms which is slowed down because there’s more space between your atoms.

    The speed of light through disturbed space is constant, there’s just more space, per undisturbed unit of space (this gives me a headache).

    1. When you inject the gel the surrounding space is pushed outward, so spatial coordinates are compressed together, in line with radial length contraction. Note though that I don’t read compressed space as more space, instead I read it as “denser” space where light etc move slower. See the previous article where I talk about shear waves speed c = √(G/ρ), where G is the shear modulus and ρ is the density, and compare it with c = 1/√(ε₀μ₀).

  9. Adriaan

    As a biologist I have to state that this discussion, though most interesting, is completely above my understanding. I do gather, however, that space itself, is not just a constant dimension, but is much more than that. Please refer me to documentation that allows me to come to grips with concepts about space.

    1. John Duffield

      Adriaan: the most important document is perhaps Einstein’s 1920 Leyden Address. This is where he spoke of space as a medium, the aether of general relativity. Also see Wikipedia which says QFT also treats space as a medium, and this where Einstein described a field as a state of space. Space is like some gin-clear ghostly elastic thing. When it’s inhomogeneous, that’s a gravitational field. When it’s got a chiral twist, that’s an electromagnetic field.

  10. Adam

    Hi John,
    I’m someone who got a degree in physics and then left it behind me until recently starting to tutor it and read about it with renewed interest. In picking up where I left off, I recently started thinking along these lines too, that everything is made out of light, and if light is a wave in spacetime then everything is equivalently made out of spacetime. So I’ve been really glad to find your blog, enjoying many of your posts. I’ve already learned a lot from reading it, and I appreciate the approach of piecing together the history of theoretical development, because the concepts simply can’t be understood otherwise. I’m especially intrigued by how people like Clifford, and of course Einstein, embraced this viewpoint but it never became a mainstream line of inquiry.

    I’ll tell you what I’ve been thinking about so far, and forgive me if I’m repeating things you touched on in posts that I haven’t read quite yet.

    You’ve mentioned the Dirac equation and the attempts to interpret it by people like Hestenes. I found this paper helpful: It explains what a spinor is and how a spinor corresponds mathematically to a null vector in special relativity, which represents the motion of a ray of light – only the spinor has an additional number which seems to me to roughly represent the self-rotation of that ray of light (about its axis of travel) – though maybe you could interpret it however you want. The Dirac bispinor wave function would then contain two rays of light passing through each point in space and time: two “light fields”, if you will. Furthermore, the first spinor in the bispinor is the “electron” part of the wave function, and the second is the “positron” part. I don’t know if it’s related, but there’s also this hypothesis of “zitterbewegung”:, put forward by Schrodinger and Dirac themselves, that says a free electron oscillates about its average position at the speed of light while it moves.

    So one challenge is: if we take the two-interacting-light-fields picture of the electron, can we state what the equation says about the behavior of those two light fields, in understandable language?

    But maybe not, because maybe that’s really just the first half. Because as you say, in relativistic language, the reason the electron’s light *appears* to be taking a curved path in flat spacetime is that it’s actually taking a straight path in curved spacetime – and that can’t be described by Dirac which assumes flat spacetime.

    What I’m hazy on is how our picture connects to the experimental results of quantum mechanics, ie. quantization and probability. For example, as I understand, they did electron diffraction experiments where they could actually see single electrons hit the detector screen. If the electron is a wave in a continuum, how exactly does it coalesce back into an electron? You’ve mentioned gamma-gamma pair production, but I guess this is more a case of one “vortex” spawning another – that is, an atom of the detector sort of attracting the dispersed electron light back into knotted form? And why can light only boost energy by quanta of hf? And how do we see the probabilistic nature of it? I imagine it’s kind of an instability in this delicate wave, where a region of slightly increased “vorticity” rapidly draws the surrounding part of the wave into it, until it stabilizes. Of course that’s just for position, then there’s the related probabilities of other observables.

    I do take issue with at least one post, where I believe you said there can’t be negative energy or particles traveling backward in time. Well, if we ultimately model the universe as a single geometric 4-dimensional “surface” where variously curved regions are perceived as the various forms of matter, then mass-energy is nothing but the convergence of geodesics along a chosen direction of that surface: if you follow two geodesics and find they converge, there is mass between them. Well, there’s no reason geodesics couldn’t diverge as well. Or that they couldn’t converge in the negative time direction. Or hell, even in the spatial directions – “faster that light” travel. I don’t know if Einstein already answered that, but until I find out I’d consider it an open question.

    In fact, I read that when Newton first thought about gravity, he felt that space itself was flowing into massive bodies, and carrying other objects with it. That didn’t work mathematically for Newtonian theory, but I’ve also read that you can accurately treat general relativity as “spacetime flowing into massive bodies”. Which suggests that our spacetime surface is just that: the surface of a deeper ocean, with spacetime flowing down into it at some places, and if it flows in, why could it not flow out as well, equating to negative mass-energy.

    So it’s great to find this blog and I look forward to reading more and hope you will continue to post.

  11. John Duffield

    Hi Adam. Thanks for the compliment. Yes, it’s intriguing how mainstream physics is not in line with Einstein. Even about gravity. It would seem Peter Bergmann had something to do with that. Plus other “Golden Age” physicists who were appealing to Einstein’s authority whilst flatly contradicting him.
    I think the two rays of light passing through each other are two loops of one 511keV photon. Have you read John Williamson and Martin van der Mark’s Is the electron a photon with toroidal topology? I’m confident the answer is yes. Also see Qiu-Hong Hu’s paper The nature of the electron. I would say the distinction between the electron and the positron is the chirality, not what comes first or second. But yes, I think we can state what the equation says about the behavior of those two light fields in understandable language. See my later articles starting with I’d say the crux of it is this: the photon is a wave in space. Where space waves, it’s curved. IMHO it’s important to make the distinction between curved spacetime and curved space.
    I’d say the electron is a wave but detection involves an interaction that is something like the optical Fourier transform. Hence you see a dot on the screen. And if you detect it at one slit, you convert it into something pointlike that goes through one slit only.
    I consider myself a relativist, but I don’t see the universe as a single geometric 4-dimensional thing. Spacetime models space at all times, so there’s no motion in spacetime. Meanwhile we live in a world of space and motion. Geodesics are abstract things that don’t exist, whilst photons and electrons and inhomogeneous space do.
    In similar vein spacetime doesn’t flow into massive bodies. See the next essay for more about that. Sorry about the Chicken-Little thing. But when I saw Max Tegmark waxing lyrical about the waterfall analogy on Horizon, I was throwing cushions at the TV. Ah, look at the time, I have to go. Nice talking to you Adam.

  12. Bruce Jimerson

    Greetings John: Good description of gravity in terms of time dilation – I actually published a similar idea in one of the E books I wrote “Secrets of the Tell Tale Universe” I think it’s a $2 read on Kindle – page 59.

    My thinking has driven me to many of the same conclusion – as far as the space as a medium, there is an almost magical may to arrive the characteristic propagation velocity of a transverse wave in space in the null universe. – take a look at page 31. When the energy density rho x c^2 = -3P in Friedmann’s 2nd equation, the null universe expands exponentially Now substitute this condition into the standard equation for the propagation velocity of a transverse wave in a medium

    v^2 =[3P/p] where little p is rho (the density) is the density and big P is pressure
    v =[-3P/-3P/c^2] ^1/2 = ic

    1. John Duffield

      Thanks Bruce. I’ll check out your Secrets of Tell Tale Universe. Two bucks won’t break the bank!

      You can use mathjax in comments here. Just use dollar characters around the expression and voila:

      $v^2 = 3P / \rho $

      This is v^2 = 3P / \rho inside dollar characters. Note though that if you edit it, you have to press F5 to refresh.

  13. Richard McFall

    How does gravity communicate? Obviously around a black hole is much amplified force of gravity. How does gravity know to accumulate and become stronger?

  14. james whitescarver

    I’m enjoying these articles. I had an epiphany recently about the nature of gravity, and your interpretation supports the model I imagine. The first discrepancy is the idea that a light wave “falls” across the timespace “grid” as shown in the NASA graphic with added grid lines. When light bends due to gravity, it is traveling a perfectly straight timeline, as far as it can tell. It does not deviate from the grid lines we imagine.
    So, we have this clear jelly with a mass injected into the middle. The jelly is then compressed and the grid lines all bow around the mass. This is the Earth and the compressed spacetime it has displaced. Now, take the path of any photon from the sun, and align your grid with that path. As it approaches the Earth, it will follow the curved line and not deviate from the grid. Light waves do not turn or bend, only the medium that carries them does. Waves do not “fall” or bend towards a mass. They travel in straight lines through space, at the speed of time. They seem to go slower in the presence of a mass’s gravity because they traverse a compressed unit of spacetime in the same amount of “time” as an uncompressed unit of spacetime, so they see appear to make slower progress as the compression increases.

    1. The description you give is the usual description, James. But I’m afraid it isn’t right. Light doesn’t follow the curvature of spacetime. It curves because space is “neither homogeneous nor isotropic”. Light curves where the speed of light is “spatially variable”, where there’s a gradient in gravitational potential. To appreciate this take a stiff board, lift one side up, and roll a marble across it. The marble follows a curved path because the board is tilted, not because the board is curved:


      1. Karl

        I’m not sure James’ is even the usual description because there can be no motion in spacetime. I think it is very important to understand well that spacetime is a geometry. It is not reality. It does not explain anything, it is only used to describle, to measure. Space is what is real, space is what the light moves in, space is the very real thing that has the properties allowing light to propagate. The variable properties allowing light to propagate variably.

        1. I utterly agree Karl. There is no motion in spacetime. It’s an abstract thing that models space at all times, and we live in a world of space and motion. The map is not the territory.

  15. Andrew

    Hi John, very interesting post. In your explanation about why matter
    falls down, I don’t think you need to invoke spin. Matter falls down
    for the same reason that light does – because of time dilation.
    Everything is moving through spacetime at the speed of light, i.e.:

    $v_t^2 + v_s^2 = c^2$

    $v_t$ = velocity through time

    $v_s$ = velocity through space

    $c$ = speed of light

    In a gravitational field, time dilation causes $v_t$ to decrease, so to
    compensate, $v_s$ increases and objects fall.

    1. the physics detective

      Sorry Andrew, this comment was in the bin for some reason.

  16. Andrew

    Hi John, very interesting post. In your explanation about why matter
    falls down, I don’t think you need to invoke spin. Matter falls down
    for the same reason that light does – because of time dilation.
    Everything is moving through spacetime at the speed of light, i.e.:

    $v_t^2 + v_s^2 = c^2$

    $v_t$ = velocity through time

    $v_s$ = velocity through space

    $c$ = speed of light

    In a gravitational field, time dilation causes $v_t$ to decrease, so to
    compensate, $v_s$ increases and objects fall.

    1. John Duffield

      I’m sorry Andrew, but spacetime is an abstract thing that models space at all times. There’s no motion in it, or through it. It isn’t just me who says this, see what Ben Crowell says here: Also see what Einstein said in 1920: “Second, this consequence shows that the law of the constancy of the speed of light no longer holds, according to the general theory of relativity, in spaces that have gravitational fields. As a simple geometric consideration shows, the curvature of light rays occurs only in spaces where the speed of light is spatially variable”. I give more quotes like this in the speed of light is not constant.

  17. Ferdinand

    Hi John, I have been enjoying reading your blog so far. Thanks! I´ve got a question on your example of why an electron falls down: would an electron with spin perpendicular to the earth surface not experience gravitation then?

    1. Yes it would. The electron’s spin isn’t as simple as a ring of light. It has a double spin. It’s a “bispinor”. See my article on the electron for details. You inflate the ring into a torus, such that there’s a rotation around the major axis and around the minor axis. Then you inflate the torus into a spindle-sphere torus. And then you have to remember that the wave has no outer surface, so the spindle-sphere torus is something like “the eye of the storm”.

  18. Andrew

    Hi John, according to your model would a particle with zero spin not fall down in a gravitational field?

    1. It isn’t really my model Andrew. Reg Norgan told me about it in 2006, and Albrecht Giese gave a similar explanation in which I think dates from 2004. But anyhow, yes a particle with zero spin would not fall down in a gravitational field. However there are no such particles. The Higgs boson is said to have been discovered at CERN, but I’m afraid I’m rather sceptical of the Higgs mechanism. Even if I wasn’t, the lifetime of the Higgs boson is said to be very short, so it’s academic.
      What isn’t, is that this model says a black hole won’t fall down in a gravitational field. A gravitational field is a place where there’s a gradient in the speed of light, so a photon “refracts” and curves downward. A black hole is a place where the speed of light is zero, and it can’t go lower than that. So the mechanism for gravity just isn’t there.

Leave a Reply