Quantum computing and the quantum quacks

I have a computer science degree. I work in IT, and have done so for many years. In that period "classical" computers have advanced by leaps and bounds. I remember teletypes and paper tape, and punched cards too. I also remember when a top-notch disk drive was the size of a washing machine and the cost of a car. It provided a miserly 10 megabytes of storage. My disk drive today is the size of my wallet and cost £46.99. It provides a terabyte of storage.…

Continue ReadingQuantum computing and the quantum quacks

Quantum gravity is a castle in the air

When you spend some time digging into the history of physics, you find yourself uncovering the foundations of physics, and then you come to appreciate a few things. You come to appreciate how gravity works, and why an electron falls down. It isn’t because gravitons are flying back and forth: Graviton image by Julie Peasley, see http://www.particlezoo.net/ You also come to appreciate that light interacts with light to form electrons and positrons in gamma-gamma pair production. You come to appreciate that the electron is not a…

Continue ReadingQuantum gravity is a castle in the air

The information paradox

The information paradox was first mooted by Stephen Hawking in 1976. For an introduction to the subject, see Brian Koberlein’s black holes tell no tales or do they? Then see Hawking’s paper on the breakdown of predictability in gravitational collapse. Hawking said information is lost down a black hole because the quantum emission is completely random and uncorrelated. He also said “this means there is no S matrix for the process of black-hole formation and evaporation”. The S-matrix is the scattering matrix which is to do…

Continue ReadingThe information paradox

The nuclear disaster

The nuclear force is the force that keeps protons and neutrons together in atomic nuclei. It is often said to be due to a pion exchange proposed by Hideki Yukawa in 1935. His Nobel prize lecture Meson theory in its developments gives some background: “As pointed out by Wigner1, specific nuclear forces between two nucleons, each of which can be either in the neutron state or the proton state, must have a very short range of the order of 10-13 cm, in order to account for…

Continue ReadingThe nuclear disaster

The proton

If you look around the internet you can find articles like Matt Strassler’s what's a proton anyway? He says the proton isn’t made up of three quarks joined together by three gluons. He says that’s a lie, a white lie, but a big one. Instead he said there’s “zillions of gluons, antiquarks, and quarks in a proton”, and gives a picture of a whole host of quarks and gluons, all mixed up together like beans in a bag. All “rushing around as fast as possible, at nearly…

Continue ReadingThe proton

The hole in the heart of quantum electrodynamics

Pair production is the creation of a particle and its antiparticle. Some say it was first observed in 1929, but it's usually accredited to Carl Anderson in 1932. He used a cloud chamber and an electromagnet to investigate cosmic rays. He effectively split a gamma photon over an atomic nucleus to create an electron and an antielectron. He called the latter the positive electron, which was soon shortened to positron: Image from schoolphysics However whilst he realised that he’d discovered the positron, he didn’t realise that he’d performed pair…

Continue ReadingThe hole in the heart of quantum electrodynamics

What is a photon?

OK, so quantum electrodynamics is said to date from 1929 when it was the same thing as quantum field theory. However it immediately suffered from the “problem of infinities”. So much so that some say most workers in the field doubted its correctness, whilst others say physicists believed a conceptual change was needed. As to what, see the conceptual foundations and the philosophical aspects of renormalization theory by Tian Yu Cao and Silvan Schweber dating from 1993. They say QFT embodies a reductionist view, but “serious doubt has often been cast on the…

Continue ReadingWhat is a photon?

Quantum electrodynamics

Quantum electrodynamics arguably goes back to Werner Heisenberg and Wolfgang Pauli in 1929, when it was the same thing as quantum field theory. But as pointed out by Robert Oppenheimer in 1930, it suffered from the "divergence issue", also known as the “problem of infinities”. So much so that some historians say most workers in the field doubted its correctness, and some say the accepted wisdom was that it was no good. Others say physicists were overwhelmed by the problems and believed that a conceptual change…

Continue ReadingQuantum electrodynamics

Quantum electrodynamics in the 1930s

Quantum electrodynamics or QED is said to be the quantum field theory or QFT which gives “a complete account of matter and light interaction”. Some say it was developed by Sin-Itiro Tomonaga, Julian Schwinger, and Richard Feynman in the 1940s: Image from Rod Nave’s hyperphysics But some say it started with Pascual Jordan in 1925, some say it started with Dirac in 1927, and some say it started with Heisenberg and Pauli’s “canonical” papers of 1929 and 1930. In the history of QFT Meinard Kuhlmann says…

Continue ReadingQuantum electrodynamics in the 1930s

Quantum electrodynamics in the 1920s

Quantum electrodynamics is often shortened to QED. As for what it is exactly, I find it difficult to say. Wikipedia says it’s the relativistic quantum field theory of electrodynamics, and gives “a complete account of matter and light interaction”. But that’s not enough. The Encyclopaedia Britannica says it’s a quantum field theory which “describes mathematically not only all interactions of light with matter but also those of charged particles with one another”. That’s not enough either. Particularly since it’s defining QED in terms of other things…

Continue ReadingQuantum electrodynamics in the 1920s