A partial history of the weak interaction

The weak interaction is said to be responsible for beta decay, where a neutron decays into a proton, an electron, and an antineutrino. All four of these particles are said to be fermions. Fermions are of course named after Enrico Fermi, who proposed what’s now known as the Fermi interaction. That was in his 1933 paper Attempt at a theory of β rays. It was famously rejected by Nature, then published in both Italian and German in 1934. The Fermi Interaction The Fermi Interaction is “the…

Continue ReadingA partial history of the weak interaction

Electromagnetic gauge theory

The standard model of particle physics is said to be a gauge theory. It’s made up of different sectors, including the electroweak sector which is said to be a Yang-Mills gauge theory. The Encyclopaedia Britannica electroweak theory article says it “arose principally out of attempts to produce a self-consistent gauge theory for the weak force, in analogy with quantum electrodynamics”. Quantum electrodynamics is the theory that says the electron is a point-particle, that electrons and protons interact by throwing photons at one another, and that photons…

Continue ReadingElectromagnetic gauge theory

The neutrino

The neutrino was proposed by Wolfgang Pauli in 1930 to account for the conservation of energy and spin angular momentum in beta decay. You can find his original letter to Lise Meitner and others on the Fermilab MicroBooNE database, along with the English translation: Pauli later said “I have done a terrible thing. I have postulated a particle that cannot be detected”. He was wrong about that. He was wrong about some other things too. He talked about a particle that travels slower than light, and…

Continue ReadingThe neutrino

The proton

If you look around the internet you can find articles like Matt Strassler’s what's a proton anyway? He says the proton isn’t made up of three quarks joined together by three gluons. He says that’s a lie, a white lie, but a big one. Instead he said there’s “zillions of gluons, antiquarks, and quarks in a proton”, and gives a picture of a whole host of quarks and gluons, all mixed up together like beans in a bag. All “rushing around as fast as possible, at nearly…

Continue ReadingThe proton

What the proton is not

The proton was discovered by the great Ernie Rutherford in 1917. He used alpha particles to convert nitrogen into oxygen, and in doing so detected hydrogen nuclei. He’d previously done experiments with alpha particles and hydrogen, so he was confident they were hydrogen nuclei. This confirmed William Prout's hypothesis which dated back to 1815. Prout had observed that the atomic weights of other elements were integer multiples of the atomic weight of hydrogen. So he came up with the idea that the hydrogen atom was a…

Continue ReadingWhat the proton is not

The mystery of mass is a myth

When you look around on the internet, you can find a whole host of articles about the mystery of mass. For example there’s a Guardian piece by Ian Sample, who says the origin of mass is “one of the most intriguing mysteries of nature”. Or there’s Concepts of Mass by Max Jammer, who says ”the notion of mass, although fundamental to physics, is still shrouded in mystery”. There’s also the ATLAS article by Michael Chanowitz, who talks about uncovering “the deep mystery of the origin of…

Continue ReadingThe mystery of mass is a myth

What charge is

The electron doesn’t have an electric field, it has an electromagnetic field. If you’re a positron and I set you down near a motionless electron, you will move linearly towards it, and it will move linearly towards you. So you might think the electron has a radial electric field, which results in a linear electric force. But it doesn’t. That linear force is there because the electron has an electromagnetic field, and so does the positron. Linear and rotational force Moreover the interaction between these fields…

Continue ReadingWhat charge is

Why magnetic monopoles do not exist

There’s a lot of articles about magnetic monopoles. See this for example: the hunt for magnetism’s elementary particle begins. It dates from 2016, and it’s by Avaneesh Pandey. He says this: “magnets, for reasons we still do not understand, seem to exist only in the form of dipoles - ones with a north and a south end. Break a bar of magnet into two, and you still do not get a magnetic monopole. Instead, you now have two smaller magnets, each with its north and south…

Continue ReadingWhy magnetic monopoles do not exist

How a magnet works

There's a rather interesting Discover magazine article called Three Words That Could Overthrow Physics: “What Is Magnetism?”. It was written by Bruno Maddox in 2008. The subtitle is "The standard model still doesn't describe magnets' spooky action at a distance". Maddox was on holiday reading Electronics for Dummies when he realised that he didn't how a magnet works. He said this: "I set out on what I assumed would be a minutes-long odyssey to understand the phenomenon. Seventy-one days later, I am here with astonishing findings.…

Continue ReadingHow a magnet works

The screw nature of electromagnetism

If you’ve ever read Maxwell’s On Physical Lines of Force, you may have noticed this: “a motion of translation along an axis cannot produce a rotation about that axis unless it meets with some special mechanism, like that of a screw”. Maxwell was referring to what I can only describe as the screw nature of electromagnetism. If you have a pump-action screwdriver you’ll appreciate that linear force is converted into rotational force. That’s like an electric motor: current flows through the wire, and the motor turns.…

Continue ReadingThe screw nature of electromagnetism