Mysteries of physics part2

Carrying on from last week, I’m working through the 18 biggest unsolved mysteries in physics by Natalie Wolchover and Jesse Emspak. Of course, not everybody would come up with the same list, so if there’s anything you’d like me to talk about, please drop me a line using the contact form. OK, where were we? We’ve had dark energy, dark matter, the arrow of time, parallel universes, and the mystery of the missing antimatter. Next is the fate of the universe: What is the fate of…

Continue ReadingMysteries of physics part2

Mysteries of physics part1

When I google on mysteries of physics, a whole pile of websites comes up. Top of the list is the 18 biggest unsolved mysteries in physics. It’s a Livescience article written by Natalie Wolchover and Jesse Emspak. It makes for interesting reading, especially for me. That’s because I’m the physics detective. I solve mysteries. Some people don’t. Instead some people peddle mystery. Because mystery sells, just like quantum sells. That’s why CERN peddle the myth that antimatter might fall up, even though everybody who knows about…

Continue ReadingMysteries of physics part1

The double slit experiment

There’s a nice little physicsworld article dating back to 2002. It was written by then-editor Peter Rodgers, and it started by asking “What is the most beautiful experiment in physics?” The answer was, of course, the double slit experiment, which was first performed by Thomas Young in 1801: Double slit experiment image from the curiosity makes you smarter article by Ashley Hamer People refer to the double slit experiment as an example of the weirdness of quantum physics. Or to promote weird ideas such as the…

Continue ReadingThe double slit experiment

Quantum computing and the quantum quacks

I have a computer science degree. I work in IT, and have done so for many years. In that period "classical" computers have advanced by leaps and bounds. I remember teletypes and paper tape, and punched cards too. I also remember when a top-notch disk drive was the size of a washing machine and the cost of a car. It provided a miserly 10 megabytes of storage. My disk drive today is the size of my wallet and cost £46.99. It provides a terabyte of storage.…

Continue ReadingQuantum computing and the quantum quacks

Quantum gravity is a castle in the air

When you spend some time digging into the history of physics, you find yourself uncovering the foundations of physics, and then you come to appreciate a few things. You come to appreciate how gravity works, and why an electron falls down. It isn’t because gravitons are flying back and forth: Graviton image by Julie Peasley, see http://www.particlezoo.net/ You also come to appreciate that light interacts with light to form electrons and positrons in gamma-gamma pair production. You come to appreciate that the electron is not a…

Continue ReadingQuantum gravity is a castle in the air

What energy is

If you ask what is energy? some people will tell you that energy is an abstract thing. This was how Richard Feynman described it in the Feynman lectures, volume I chapter 4. He used the analogy of children’s blocks. He said these blocks were absolutely indestructible and could not be divided. But then he said there are no blocks. Only then he contradicted himself by saying energy has a number of different forms, such as gravitational energy, kinetic energy, and heat energy: Image from Assignment point…

Continue ReadingWhat energy is

The fate of the universe

One of the things cosmologists like to talk about is the fate of the universe. Some say it all depends on the density parameter omega: Ω. This started life as the average matter density of the universe divided by a “critical” matter density for the Friedmann universe: Based on the Friedmann universes public domain image by BenRG, see Wikipedia Commons and Wikipedia Nowadays when we talk about omega we don’t restrict ourselves to matter alone. That’s because energy doesn’t necessarily take the form of matter, and…

Continue ReadingThe fate of the universe

The edge of the universe

When you dig into the history of cosmology, some things catch your eye. Things like the “boundary conditions” in Einstein’s 1917 cosmological considerations in the general theory of relativity. Or something Willem de Sitter said in his 1917 paper On the relativity of inertia. Remarks concerning Einstein's latest hypothesis. He said this: “if the gμν at infinity are zero of a sufficiently high order, then the universe is finite in natural measure”. There’s also something Paul Steinhardt said in his 1982 Natural Inflation paper. He said this:…

Continue ReadingThe edge of the universe

Dark energy

Dark energy is said to be a mystery. Google on dark energy mystery and you can find plenty of material saying as much. Such as dark energy: the biggest mystery in the universe by Richard Panek in the Smithsonian magazine. Or dark energy: mystery of the millennium by Thanu Padmanabhan on the arXiv. Dark energy comes above dark matter in 10 greatest unsolved mysteries in physics on IFL science, and since it’s circa 68% of the mass-energy of the universe as opposed to 27% for dark…

Continue ReadingDark energy

Inflation

The theory of cosmic or cosmological inflation is related to Big Bang theory. It’s been around now for the thick end of forty years. Or more. By 1980 a lot of cosmologists were happy that the universe was expanding, and that it wasn’t a steady-state universe. A lot of cosmologists also thought of the initial expansion of the universe as something fairly steady. However inflation introduced the idea that the initial expansion was very rapid: Image from Rod Nave’s hyperphysics As for how it all began,…

Continue ReadingInflation