Electromagnetic gauge theory

The standard model of particle physics is said to be a gauge theory. It’s made up of different sectors, including the electroweak sector which is said to be a Yang-Mills gauge theory. The Encyclopaedia Britannica electroweak theory article says it “arose principally out of attempts to produce a self-consistent gauge theory for the weak force, in analogy with quantum electrodynamics”. Quantum electrodynamics is the theory that says the electron is a point-particle, that electrons and protons interact by throwing photons at one another, and that photons…

Continue Reading

What charge is

The electron doesn’t have an electric field, it has an electromagnetic field. If you’re a positron and I set you down near a motionless electron, you will move linearly towards it, and it will move linearly towards you. So you might think the electron has a radial electric field, which results in a linear electric force. But it doesn’t. That linear force is there because the electron has an electromagnetic field, and so do you. Linear and rotational force Moreover the interaction between these fields doesn’t…

Continue Reading

Why magnetic monopoles do not exist

There’s a lot of articles about magnetic monopoles. See this for example: the hunt for magnetism’s elementary particle begins. It dates from 2016, and it’s by Avaneesh Pandey. He says this: “magnets, for reasons we still do not understand, seem to exist only in the form of dipoles - ones with a north and a south end. Break a bar of magnet into two, and you still do not get a magnetic monopole. Instead, you now have two smaller magnets, each with its north and south…

Continue Reading

The screw nature of electromagnetism

If you’ve ever read Maxwell’s On Physical Lines of Force, you may have noticed this: “a motion of translation along an axis cannot produce a rotation about that axis unless it meets with some special mechanism, like that of a screw”. Maxwell was referring to what I can only describe as the screw nature of electromagnetism. If you have a pump-action screwdriver you’ll appreciate that linear force is converted into rotational force. That’s like an electric motor: current flows through the wire, and the motor turns.…

Continue Reading

The positron

The positron is usually described as a fundamental or elementary particle. That doesn’t tell you much, but when you look for more information, it’s rather scant. You soon learn that the positron  has a mass of 9.109 x 10-31 kg or 511keV/c². You learn that it has a charge of 1.602 x 10−19 Coulombs or +1e, the e being elementary charge. You also learn that it has spin ½. However you don’t learn much else. Particularly since the particle data group doesn’t have a listing for…

Continue Reading

The electron

The electron is usually described as a fundamental or elementary particle. That doesn’t tell you much, but when you look for more information, it’s rather scant. You soon learn that the electron has a mass of 9.109 x 10-31 kg or 511keV/c². You learn that it has a charge of −1.602 x 10−19 Coulombs or -1e, the e being elementary charge. You also learn that it has spin ½. However you don’t learn much else. Instead you get mixed messages. Take a look at what is…

Continue Reading

How pair production works

Yes, there's a hole in the heart of quantum electrodynamics because it describes the interaction between light and matter, but not the interaction between light and light. That's the interaction that creates matter in gamma-gamma pair production. QED misses the crucial point that waves interact. Even though we've all seen waves interact, down on the beach. Imagine a big wave is coming towards you. You make a little wave with your hand and send it scooting towards the big wave: The little wave rides up and over…

Continue Reading
Close Menu