The mystery of the missing antimatter

There’s an awful lot of articles about antimatter and mystery. For example there’s a 2017 Symmetry magazine article matter-antimatter mystery remains unsolved. It’s about the BASE experiment at CERN where they’ve measured the antiproton magnetic moment. Surprise surprise, it’s the exact opposite of the proton magnetic moment. Then there’s the LiveScience article mystery deepens: matter and antimatter are mirror images. Of course they are, the positron has the opposite chirality to the electron. And then there’s the CERN courier article does antimatter fall up? No it…

Continue Reading

The nuclear force

The nuclear force holds atomic nuclei together. When protons and neutrons are a femtometre apart, the nuclear force between them is powerfully attractive. If you could turn this powerfully attractive force off, an atomic nucleus would explode into a spray of protons and neutrons. That’s because there’s an electromagnetic force between the protons, and it’s powerfully repulsive. In stable nuclei, the forces are in balance. But as Rod Nave says on his most excellent hyperphysics website, when the balance is broken the resultant radioactivity yields particles…

Continue Reading

The neutron

There’s a nice potted history of the discovery of the neutron on the Nobel website. It mentions the great Ernie Rutherford who discovered the proton in 1917. He knew all about Prout's hypothesis wherein the atomic weights of various elements were integer multiples of the atomic weight of hydrogen. However Rutherford also knew that the atomic number, the number of protons, was circa half the atomic weight. So in 1920 he suggested that this disparity was due to neutral particles called neutrons. The evidence of beta…

Continue Reading

Electroweak theory

The weak interaction is said to be responsible for beta decay, muon decay, and some other decays. For example it’s said to be responsible for charged pion decay, but not for the more rapid neutral pion decay. That’s said to be caused by electromagnetism. However the electroweak interaction is said to be a unification of the weak interaction with electro-magnetism, and thus is said to cover all pion decays. The beginnings of unification As to when this unification began, it’s hard to say. Some might say…

Continue Reading

Electromagnetic gauge theory

The standard model of particle physics is said to be a gauge theory. It’s made up of different sectors, including the electroweak sector which is said to be a Yang-Mills gauge theory. The Encyclopaedia Britannica electroweak theory article says it “arose principally out of attempts to produce a self-consistent gauge theory for the weak force, in analogy with quantum electrodynamics”. Quantum electrodynamics is the theory that says the electron is a point-particle, that electrons and protons interact by throwing photons at one another, and that photons…

Continue Reading

What charge is

The electron doesn’t have an electric field, it has an electromagnetic field. If you’re a positron and I set you down near a motionless electron, you will move linearly towards it, and it will move linearly towards you. So you might think the electron has a radial electric field, which results in a linear electric force. But it doesn’t. That linear force is there because the electron has an electromagnetic field, and so do you. Linear and rotational force Moreover the interaction between these fields doesn’t…

Continue Reading

Why magnetic monopoles do not exist

There’s a lot of articles about magnetic monopoles. See this for example: the hunt for magnetism’s elementary particle begins. It dates from 2016, and it’s by Avaneesh Pandey. He says this: “magnets, for reasons we still do not understand, seem to exist only in the form of dipoles - ones with a north and a south end. Break a bar of magnet into two, and you still do not get a magnetic monopole. Instead, you now have two smaller magnets, each with its north and south…

Continue Reading

How a magnet works

To understand how a magnet works, you need to understand that the electron doesn’t have an electric field or a magnetic field, it has an electromagnetic field. In fact it is electromagnetic field. We made it in gamma-gamma pair production, such that a 511keV electromagnetic wave is configured as a spin ½ standing wave. Hence the wave nature of matter. When you wrap a sinusoidal electro-magnetic field variation into a twisted double loop, the minimum and maximum field variation combine, along with all points in between,…

Continue Reading

The screw nature of electromagnetism

If you’ve ever read Maxwell’s On Physical Lines of Force, you may have noticed this: “a motion of translation along an axis cannot produce a rotation about that axis unless it meets with some special mechanism, like that of a screw”. Maxwell was referring to what I can only describe as the screw nature of electromagnetism. If you have a pump-action screwdriver you’ll appreciate that linear force is converted into rotational force. That’s like an electric motor: current flows through the wire, and the motor turns.…

Continue Reading

The positron

The positron is usually described as a fundamental or elementary particle. That doesn’t tell you much, but when you look for more information, it’s rather scant. You soon learn that the positron  has a mass of 9.109 x 10-31 kg or 511keV/c². You learn that it has a charge of 1.602 x 10−19 Coulombs or +1e, the e being elementary charge. You also learn that it has spin ½. However you don’t learn much else. Particularly since the particle data group doesn’t have a listing for…

Continue Reading

The electron

The electron is usually described as a fundamental or elementary particle. That doesn’t tell you much, but when you look for more information, it’s rather scant. You soon learn that the electron has a mass of 9.109 x 10-31 kg or 511keV/c². You learn that it has a charge of −1.602 x 10−19 Coulombs or -1e, the e being elementary charge. You also learn that it has spin ½. However you don’t learn much else. Instead you get mixed messages. Take a look at what is…

Continue Reading

How pair production works

Yes, there's a hole in the heart of quantum electrodynamics because it describes the interaction between light and matter, but not the interaction between light and light. That's the interaction that creates matter in gamma-gamma pair production. QED misses the crucial point that waves interact. Even though we've all seen waves interact, down on the beach. Imagine a big wave is coming towards you. You make a little wave with your hand and send it scooting towards the big wave: The little wave rides up and over…

Continue Reading

The hole in the heart of quantum electrodynamics

Pair production is the creation of a particle and its antiparticle. Some say it was first observed in 1929, but it's usually accredited to Carl Anderson in 1932. He used a cloud chamber and an electromagnet to investigate cosmic rays. He effectively split a gamma photon over an atomic nucleus to create an electron and an antielectron. He called the latter the positive electron, which was soon shortened to positron: Image from schoolphysics However whilst he realised that he’d discovered the positron, he didn’t realise that he’d performed pair…

Continue Reading

The photon

The photon has a wave nature, which is why we can refract and diffract light. But what sort of a wave nature? When you try to find a picture, a lot of illustrations depict the photon as some kind of wave train. Even Feynman diagrams do this. Image by bitwise, see Wikipedia commons The photon is shown as a squiggly line, sometimes with an arrowhead, something like this: ⇝. That suggests you could split a photon lengthwise and end up with two photons, each with the…

Continue Reading

What is a photon?

OK, so quantum electrodynamics is said to date from 1929 when it was the same thing as quantum field theory. However it immediately suffered from the “problem of infinities”. So much so that some say most workers in the field doubted its correctness, whilst others say physicists believed a conceptual change was needed. As to what, see the conceptual foundations and the philosophical aspects of renormalization theory by Tian Yu Cao and Silvan Schweber dating from 1993. They say QFT embodies a reductionist view, but “serious doubt has often been cast on the…

Continue Reading
Close Menu