Electroweak theory

The weak interaction is said to be responsible for beta decay, muon decay, and some other decays. For example it’s said to be responsible for charged pion decay, but not for the more rapid neutral pion decay. That’s said to be caused by electromagnetism. However the electroweak interaction is said to be a unification of the weak interaction with electro-magnetism, and thus is said to cover all pion decays. The beginnings of unification As to when this unification began, it’s hard to say. Some might say…

Continue Reading

A partial history of the weak interaction

The weak interaction is said to be responsible for beta decay, where a neutron decays into a proton, an electron, and an antineutrino. All four of these particles are said to be fermions. Fermions are of course named after Enrico Fermi, who proposed what’s now known as the Fermi interaction. That was in his 1933 paper Attempt at a theory of β rays. It was famously rejected by Nature, then published in both Italian and German in 1934. The Fermi Interaction The Fermi Interaction is “the…

Continue Reading

The neutrino

The neutrino was proposed by Wolfgang Pauli in 1930 to account for the conservation of energy and spin angular momentum in beta decay. You can find his original letter to Lise Meitner and others on the Fermilab MicroBooNE database, along with the English translation: Pauli later said “I have done a terrible thing. I have postulated a particle that cannot be detected”. He was wrong about that. He was wrong about some other things too. He talked about a particle that travels slower than light, and…

Continue Reading

What the proton is not

The proton was discovered by the great Ernie Rutherford in 1917. He used alpha particles to convert nitrogen into oxygen, and in doing so detected hydrogen nuclei. He’d previously done experiments with alpha particles and hydrogen, so he was confident they were hydrogen nuclei. This confirmed William Prout's hypothesis which dated back to 1815. Prout had observed that the atomic weights of other elements were integer multiples of the atomic weight of hydrogen. So he came up with the idea that the hydrogen atom was a…

Continue Reading

The mystery of mass is a myth

When you look around on the internet, you can find a whole host of articles about the mystery of mass. For example there’s a Guardian piece by Ian Sample, who says the origin of mass is “one of the most intriguing mysteries of nature”. Or there’s Concepts of Mass by Max Jammer, who says ”the notion of mass, although fundamental to physics, is still shrouded in mystery”. There’s also the ATLAS article by Michael Chanowitz, who talks about uncovering “the deep mystery of the origin of…

Continue Reading

What charge is

The electron doesn’t have an electric field, it has an electromagnetic field. If you’re a positron and I set you down near a motionless electron, you will move linearly towards it, and it will move linearly towards you. So you might think the electron has a radial electric field, which results in a linear electric force. But it doesn’t. That linear force is there because the electron has an electromagnetic field, and so do you. Linear and rotational force Moreover the interaction between these fields doesn’t…

Continue Reading

Why magnetic monopoles do not exist

There’s a lot of articles about magnetic monopoles. See this for example: the hunt for magnetism’s elementary particle begins. It dates from 2016, and it’s by Avaneesh Pandey. He says this: “magnets, for reasons we still do not understand, seem to exist only in the form of dipoles - ones with a north and a south end. Break a bar of magnet into two, and you still do not get a magnetic monopole. Instead, you now have two smaller magnets, each with its north and south…

Continue Reading

How a magnet works

There's a rather interesting Discover magazine article called Three Words That Could Overthrow Physics: “What Is Magnetism?”. It was written by Bruno Maddox in 2008. The subtitle is "The standard model still doesn't describe magnets' spooky action at a distance". Maddox was on holiday reading Electronics for Dummies when he realised that he didn't how a magnet works. He said this: "I set out on what I assumed would be a minutes-long odyssey to understand the phenomenon. Seventy-one days later, I am here with astonishing findings.…

Continue Reading

The screw nature of electromagnetism

If you’ve ever read Maxwell’s On Physical Lines of Force, you may have noticed this: “a motion of translation along an axis cannot produce a rotation about that axis unless it meets with some special mechanism, like that of a screw”. Maxwell was referring to what I can only describe as the screw nature of electromagnetism. If you have a pump-action screwdriver you’ll appreciate that linear force is converted into rotational force. That’s like an electric motor: current flows through the wire, and the motor turns.…

Continue Reading

The electron

The electron is usually described as a fundamental or elementary particle. That doesn’t tell you much, but when you look for more information, it’s rather scant. You soon learn that the electron has a mass of 9.109 x 10-31 kg or 511keV/c². You learn that it has a charge of −1.602 x 10−19 Coulombs or -1e, the e being elementary charge. You also learn that it has spin ½. However you don’t learn much else. Instead you get mixed messages. Take a look at the enigmatic electron…

Continue Reading
Close Menu