The theory of everything

I think when you’ve absorbed a lot of material, especially the old material, you get a handle on the theory of everything. The Einstein digital papers are important for this. That’s where you learn how gravity works. You learn that light curves because the speed of light is spatially variable. Not because it follows the curvature of spacetime. You learn that a gravitational field is a place where a space is neither homogeneous nor isotropic in a non-linear fashion. Hence when you plot your metrical measurements…

Continue Reading

A worble embracing itself

See the 2014 essay on the fluid dynamics of James Clerk Maxwell by Henry Keith Moffat. He referred to Maxwell’s 1867 letter to Peter Guthrie Tait. That’s where Maxwell said the simplest indivisible whorl “is either two embracing worbles or a worble embracing itself”. A worble embracing itself has a ring to it. I think it’s one of the secrets of the universe myself. Because John Williamson and Martin van der Mark were talking about something similar in their 1997 paper Is the electron a photon…

Continue Reading

The TOE that Maxwell missed

If you’ve ever read James Clerk Maxwell’s 1865 paper A Dynamical Theory of the Electromagnetic Field, you might have noticed his Note on the Attraction of Gravitation. It’s at the end of part IV. Maxwell ends up saying energy is essentially positive, and that “the presence of dense bodies influences the medium so as to diminish this energy wherever there is a resultant attraction”. Then he said this: “As I am unable to understand in what way a medium can possess such properties, I cannot go…

Continue Reading

A grand unified history lesson

Like I was saying last time, a major goal of physics is “to unify the various fundamental forces” in a theory that offers “a more elegant understanding of the organization of the universe”. This is called a grand unified theory or GUT if it doesn’t include gravity, and a theory of everything or TOE if it does: Image from Sten Odenwald’s astronomy cafe Personally I don’t understand why anybody doesn’t include gravity. Gravity is easy. Einstein explained most of it in his 1920 Leyden Address. A…

Continue Reading

Grand Unified Theories

I was talking to a guy the other day about Grand Unified Theories, and I thought I ought to say something about them. The Wikipedia Grand Unified Theory article gives a fair account. It says a GUT is a model where “at high energy, the three gauge interactions of the Standard Model that define the electromagnetic, weak, and strong interactions, or forces, are merged into a single force”. You’ve doubtless seen the picture: Image from the particle adventure That’s from the particle adventure website. They say this: “one of the major goals of particle physics…

Continue Reading

Even physicists don’t understand quantum mechanics

Check out Sean Carroll’s New York Times article Even Physicists Don’t Understand Quantum Mechanics. I thought it was great. And I just loved that subtitle: Worse, they don’t seem to want to understand it. Carroll started by quoting Feynman, who said this: “I think I can safely say that nobody really understands quantum mechanics”. That’s a good start. Feynman was known as the great explainer, but he couldn’t explain how a magnet works. Or how gravity works. Moreover he was a major contributor to quantum electrodynamics,…

Continue Reading

Supergravity

Clunk. That’s the sound of my head hitting my desk. Because the $3m special breakthrough prize has just been awarded to the “discoverers” of supergravity. Yes folks, that’s one of those mathematical “discoveries”. It isn’t like discovering America or penicillin. It’s the sort of “discovery” that people peddle when they’re hyping a hypothesis for which there’s no evidence at all. The prize was awarded to Sergio Ferrara, Daniel Freedman, and Peter van Nieuwenhuizen for an “Influential Theory Combining Gravity with Particle Physics”. Only it isn’t influential…

Continue Reading

Misconceptions in particle physics

Physics is said to be the king of the sciences, and particle physics is said to be the most important branch of physics. As per the Wikipedia particle physics article, it’s the branch of physics that studies the nature of the particles that constitute matter and radiation. The article tells us that elementary particles are excitations of the quantum fields, and says this: “the currently dominant theory explaining these fundamental particles and fields, along with their dynamics, is called the Standard Model”. Glenn Starkman gives a…

Continue Reading

Misconceptions in gravitational physics

I think it’s safe to say that there are some misconceptions in physics. The issue of course, is how many. That’s where I part company with your average physicist. He’ll tell you that whilst we don’t understand everything, we do understand some things, such as black holes. Only he doesn’t. Take a look at the Wikipedia black hole article. It says this: “a black hole is a region of spacetime exhibiting gravitational acceleration so strong that nothing - no particles or even electromagnetic radiation such as…

Continue Reading

You can lead a horse to water

I thought I ought to say something about some of the conversations I have with some physicists. A recent example concerned gravity, and why light curves. I found myself talking to a guy doing a PhD called Erik Anson. At the end, I thought of the old adage: you can lead a horse to water, but you can't make him drink. I am reminded of some of the conversations I had years ago with Young Earth Creationists. You can show them the strata, the fossils, and…

Continue Reading
Close Menu